精英家教网 > 高中数学 > 题目详情

【题目】已知为定义在R上的奇函数,当为二次函数,且满足上的两个零点为

1求函数在R上的解析式;

2作出的图象并根据图象讨论关于的方程根的个数

【答案】12,方程有个根;,方程有个根; ,方程有个根;,方程有个根;

【解析】

试题分析:1,根据上的两个零点为,设函数为两根式即,所以解得时,上的奇函数,求得解析式为,因为奇函数,可得函数解析式;2关于的方程根的个数,即函数交点的个数,象可得

试题分析:1由题意,当时,设

注:一样给分

时,上的奇函数,

时,

时,由得:

所以

2如图所示

注:的点或两空心点不标注扣1分,

不要重复扣分

得:,在图中作

根据交点讨论方程的根:

,方程有个根;

,方程有个根;

,方程有个根;

,方程有个根;

,方程有个根

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面四边形中, ,将沿折起,使得平面平面,如图.

(1)求证:

(2)若中点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABCA1B1C1中,已知AB⊥侧面BB1C1CABBC1BB12∠BCC160°

)求证:C1B⊥平面ABC

)设0≤λ≤1),且平面AB1EBB1E所成的锐二面角的大小为30°,试求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)求的单调区间;

(II)若对任意的,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方形ABCD和正方形ABEF的边长都是1,并且平面ABCD⊥平面ABEF,点MAC上移动,点NBF上移动.若|CM||BN|a(0a )

(1)MN的长度;

(2)a为何值时,MN的长度最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱底面直角梯形,是棱上一点,.

(1)求异面直线所成的角;

(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次国际学术会议上,来自四个国家的五位代表被安排坐在一张圆桌,为了使他们能够自由交谈,事先了解到的情况如下:

甲是中国人,还会说英语.

乙是法国人,还会说日语.

丙是英国人,还会说法语.

丁是日本人,还会说汉语.

戊是法国人,还会说德语.

则这五位代表的座位顺序应为( )

A. 甲丙丁戊乙 B. 甲丁丙乙戊

C. 甲乙丙丁戊 D. 甲丙戊乙丁

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若当时,求的单调区间;

(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间(单位:小时)与当天投篮命中率之间的关系:

时间

1

2

3

4

5

命中率

0.4

0.5

0.6

0.6

0.4

小李这5天的平均投篮命中率;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率.

附:线性回归方程中系数计算公式

查看答案和解析>>

同步练习册答案