精英家教网 > 高中数学 > 题目详情

【题目】已知函数,且.

(1)求函数的极值;

(2)当时,证明:.

【答案】1有极大值,函数有极小值;(2)证明见解析.

【解析】试题分析:(1)求极值,可先求得导数,然后通过解不等式确定增区间,解不等式确定减区间,则可得极大值和极小值;(2)要证明此不等式,我们首先研究不等式左边的函数,记,求出其导数,可知上单调递增,在上单调递减,,这是时最小值,,这是时的最大值,因此要证明题中不等式,可分类,分别证明.

试题解析:(1)依题意,

,则; 令,则

故当时,函数有极大值,当时,函数有极小值

2) 由(1)知,令

可知上单调递增,在上单调递减,令

时,,所以函数的图象在图象的上方.

时,函数单调递减,所以其最小值为最大值为2,而,所以函数的图象也在图象的上方.

综上可知,当时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【2014高考课标2理数18】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,

E为PD的中点.

(Ⅰ)证明:PB∥平面AEC;

(Ⅱ)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.

年龄(单位:岁)

频数

5

10

15

10

5

5

赞成人数

5

10

12

7

2

1

(Ⅰ)若以“年龄”45岁为分界点,由以上统计数据完成下面列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;

年龄不低于45岁的人数

年龄低于45岁的人数

合计

赞成

不赞成

合计

(Ⅱ)若从年龄在的被调查人中按照分层抽样的方法选取6人进行追踪调查,并给予其中3人“红包”奖励,求3人中至少有1人年龄在的概率.

参考数据如下:

附临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

的观测值: (其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=loga(3﹣ax)(a>0,a≠1)
(1)当a=3时,求函数f(x)的定义域;
(2)若g(x)=f(x)﹣loga(3+ax),请判定g(x)的奇偶性;
(3)是否存在实数a,使函数f(x)在[2,3]递增,并且最大值为1,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为(
A.y=x3
B.y=lgx
C.y=|x|
D.y=x1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1.
(1)求a,k的值;
(2)当x为何值时,f(logax)有最小值?求出该最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读下列材料,回答后面问题:

在2014年12月30日播出的“新闻直播间”节目中,主持人说:“……加入此次亚航失联航班被证实失事的话,2014年航空事故死亡人数将达到1320人.尽管如此,航空安全专家还是提醒:飞机仍是相对安全的交通工具.①世界卫生组织去年公布的数据显示,每年大约有124万人死于车祸,而即使在航空事故死亡人数最多的一年,也就是1972年,其死亡数字也仅为3346人;截至2014年9月,每百万架次中有2.1次(指飞机失事),乘坐汽车的百万人中其死亡人数在100人左右.”

对上述航空专家给出的①、②两段表述(划线部分),你认为不能够支持“飞机仍是相对安全的交通工具”的所有表述序号为__________,你的理由是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个命题,其中正确的个数有( )

①由独立性检验可知,有的把握认为物理成绩与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀.

②两个随机变量相关性越强,则相关系数的绝对值越接近于1;

③在线性回归方程中,当解释变量每增加一个单位时,预报变量平均增加0.2个单位;

④对分类变量,它们的随机变量的观测值来说, 越小,“有关系”的把握程度越大.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(x1 , f(x1)),B(x2 , f(x2))是函数f(x)=2sin(ωx+φ)(ω>0,﹣ <φ<0)图象上的任意两点,且角φ的终边经过点P(1,﹣ ),若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为
(1)求函数f(x)的解析式;
(2)若方程3[f(x)]2﹣f(x)+m=0在x∈( )内有两个不同的解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案