精英家教网 > 高中数学 > 题目详情
△ABC的外接圆的圆心为O,AB=2,AC=
3
,BC=
7
,则
AO
BC
等于(  )
分析:由AB,AC及BC的长,利用勾股定理的逆定理得到三角形ABC为直角三角形,即A为直角,可得BC为圆的直径,O为BC中点,利用直角三角形斜边上的中线等于斜边的一半,根据BC的长求出AO及CO的长,再由AC的长,在三角形AOC中设出∠AOC=α,利用余弦定理求出cosα的值,然后利用平面向量的数量积运算法则表示出所求的式子,利用诱导公式化简后,将各自的值代入即可求出值.
解答:解:∵AB=2,AC=
3
,BC=
7

∴BC2=AB2+AC2
∴A=
π
2

∴BC为圆的直径,O为斜边BC的中点,
∴CO=BO=AO=
1
2
BC=
7
2
,又AC=
3

设∠AOC=α,
由余弦定理得:cosα=
AO2+CO2-AC2
2AO•CO
=
1
7

AO
BC
=|
AO
|•|
BC
|cos(π-α)=
7
2
×
7
×(-
1
7
)=-
1
2

故选C
点评:此题考查了余弦定理,勾股定理的逆定理,直角三角形斜边上的中线等于斜边的一半,以及平面向量的数量积运算,熟练掌握定理及法则是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知三点A(-2,0)、B(2,0)C(1,
3
)
,△ABC的外接圆为圆,椭圆
x2
4
+
y2
2
=1
的右焦点为F.
(1)求圆M的方程;
(2)若点P为圆M上异于A、B的任意一点,过原点O作PF的垂线交直线x=2
2
于点Q,试判断直线PQ与圆M的位置关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•佛山一模)已知A(-2,0),B(2,0),C(m,n).
(1)若m=1,n=
3
,求△ABC的外接圆的方程;
(2)若以线段AB为直径的圆O过点C(异于点A,B),直线x=2交直线AC于点R,线段BR的中点为D,试判断直线CD与圆O的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(0,1),B,C是x轴上两点,且|BC|=6(B在C的左侧).设△ABC的外接圆的圆心为M.
(Ⅰ)已知
AB
AC
=-4
,试求直线AB的方程;
(Ⅱ)当圆M与直线y=9相切时,求圆M的方程;
(Ⅲ)设|AB|=l1,|AC|=l2s=
l1
l2
+
l2
l1
,试求s的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区一模)如图,圆O是△ABC的外接圆,过点C作圆O的切线交BA的延长线于点D.若CD=
3
,AB=AC=2,则线段AD的长是
1
1
;圆O的半径是
2
2

查看答案和解析>>

科目:高中数学 来源:2012年北京市房山区良乡中学高三数学会考模拟试卷(4)(解析版) 题型:解答题

已知点A(0,1),B,C是x轴上两点,且|BC|=6(B在C的左侧).设△ABC的外接圆的圆心为M.
(Ⅰ)已知,试求直线AB的方程;
(Ⅱ)当圆M与直线y=9相切时,求圆M的方程;
(Ⅲ)设|AB|=l1,|AC|=l2,试求s的最大值.

查看答案和解析>>

同步练习册答案