精英家教网 > 高中数学 > 题目详情
1.2位男生和3位女生共5位同学站成一排,若3位女生中有且只有两位女生相邻,则不同排法的种数是72种.(用数字作答)

分析 把3位女生的两位捆绑在一起看做一个复合元素,和剩下的一位女生,插入到2位男生全排列后形成的3个空中的2个空中,问题得以解决.

解答 解:把3位女生的两位捆绑在一起看做一个复合元素,和剩下的一位女生,插入到2位男生全排列后形成的3个空中的2个空中,
故有A32A22A32=72种,
故答案为:72

点评 本题考查了排列中相邻问题和不相邻问题,相邻用捆绑,不相邻用插空,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.下面四个条件中,使a>b成立的充要条件是(  )
A.|a|>|b|B.$\frac{1}{a}$>$\frac{1}{b}$C.a2>b2D.2a>2b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,在△ABC中,$\frac{AD}{DC}$=$\frac{BE}{EA}$=2,$\overrightarrow{DE}$=λ$\overrightarrow{AC}$+μ$\overrightarrow{CB}$,则λ+μ=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.“命题p为真命题”是“命题p∨q为真命题”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点E,F,G分别为BC,PA,PD的中点,且PA=AB=2.
(Ⅰ)证明:EF∥平面ACG;
(Ⅱ)证明:平面PBC⊥平面AEF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.抛物线y=x2上有一点A的横坐标为a,其中a∈(0,1),过点A的抛物线的切线l交x轴及直线x=1于B,C两点,直线x=1交x轴于D点.
(1)求直线l的方程;
(2)求△BCD的面积S(a),并求出a为何值时S(a)有最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.复数i(1-i)的实部为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知双曲线${x^2}-\frac{y^2}{b^2}=1\;(b>0)$的一个焦点是(2,0),则b=$\sqrt{3}$;双曲线渐近线的方程为$y=±\sqrt{3}x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知正数a,b满足2a•4b≤8,则ab的最大值为$\frac{9}{8}$.

查看答案和解析>>

同步练习册答案