精英家教网 > 高中数学 > 题目详情
20.已知x=$\frac{π}{6}$是函数f(x)=sin(2x+φ)(0<φ<$\frac{π}{2}$)图象的一条
对称轴.
(1)求函数f(x)的解析式;          
(2)求函数f(-x)的单调增区间;
(3)作出函数f(x)在x∈[0,π]上的图象简图(列表,画图).

分析 (1)利用正弦函数的对称性可得2×$\frac{π}{6}$+ϕ=kπ+$\frac{π}{2}$,k∈Z,又0<ϕ<$\frac{π}{2}$,可求ϕ,即可解得函数解析式;
(2)先求函数解析式f(-x)=-sin(2x-$\frac{π}{6}$),由2kπ+$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z,即可解得函数f(x)的增区间.
(3)用五点法即可作图得解.

解答 解:(1)∵$x=\frac{π}{6}$是函数f(x)=sin(2x+ϕ)$(0<ϕ<\frac{π}{2})$图象的一条对称轴.
∴2×$\frac{π}{6}$+ϕ=kπ+$\frac{π}{2}$,k∈Z.
∴ϕ=kπ+$\frac{π}{6}$,k∈Z.
又0<ϕ<$\frac{π}{2}$,
∴ϕ=$\frac{π}{6}$,
∴可得:$f(x)=sin(2x+\frac{π}{6})$;
(2)∵f(-x)=sin(-2x+$\frac{π}{6}$)=-sin(2x-$\frac{π}{6}$),
∴由2kπ+$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z,即可解得函数f(x)的增区间为$[kπ+\frac{π}{3},kπ+\frac{5}{6}π],k∈Z$.
(3)列表

x0$\frac{π}{6}$$\frac{5π}{12}$$\frac{2π}{3}$$\frac{11π}{12}$π
$2x+\frac{π}{6}$$\frac{π}{6}$$\frac{π}{2}$π$\frac{3π}{2}$$\frac{13π}{6}$
f(x)$\frac{1}{2}$10-10$\frac{1}{2}$
f(x)在x∈[0,π]上的图象简图如下图所示:

点评 本题主要考查了正弦函数的单调性和对称性,考查了五点法作函数y=Asin(ωx+φ)的图象,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是不共线的非零向量,且$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$.
(1)已知$\overrightarrow{c}$=3$\overrightarrow{{e}_{1}}$+4$\overrightarrow{{e}_{2}}$,以$\overrightarrow{a}$,$\overrightarrow{b}$为基底,表示向量$\overrightarrow{c}$;
(2)若4$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$=λ$\overrightarrow{a}$+μ$\overrightarrow{b}$,求λ,μ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线l1:3mx+8y+3m-10=0过定点(  )
A.(-1,-$\frac{4}{5}$)B.(-1,$\frac{4}{5}$)C.(-1,$\frac{5}{4}$)D.(-1,-$\frac{5}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若数列{an}满足${a_1}•{a_2}•{a_3}•…•{a_n}={n^2}+3n+2$,则an=$\left\{\begin{array}{l}6,n=1\\ \frac{n+2}{n},n≥2,n∈N\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.过点(0,2)且与抛物线y2=mx只有一个公共点的直线共有3条.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.要得到余弦曲线y=cosx,只需将正弦曲线y=sinx向左平移(  )
A.$\frac{π}{2}$个单位B.$\frac{π}{3}$个单位C.$\frac{π}{4}$个单位D.$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,在正方体ABCD-A1B1C1D1中,M为棱D1C1的中点.设AM与平面BB1D1D的交点为O,则(  )
A.三点D1,O,B共线,且OB=2OD1B.三点D1,O,B不共线,且OB=2OD1
C.三点D1,O,B共线,且OB=OD1D.三点D1,O,B不共线,且OB=OD1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=($\frac{1}{2}$)${\;}^{\frac{1}{x}}$+4,则它的值域是(4,5)∪(5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.观察:sin10°+sin20°+sin30°+…+sin200°=$\frac{2sin105°sin100°}{sin10°}$;sin12°+sin24°+sn36°+…+sin192°=$\frac{2sin102°sin96°}{sin12°}$,由此猜出一个一般式为sinx+sin2x+…+sinnx=$\frac{2sin\frac{1+n}{2}x•sin\frac{nx}{2}}{sinx}$(n∈N+).

查看答案和解析>>

同步练习册答案