分析 (1)由条件利用同角三角函数的基本关系求得cosα、sin((β-α)的值,再根据cosβ=cos[(β-α)+α]利用两角和的余弦公式求得它的值.
(2)根据(1)可得cosβ=$\frac{\sqrt{2}}{2}$,再结合π<β<2π,求得β的值.
解答 解:(1)∵已知$\frac{π}{2}$<α<π,$\frac{π}{2}$<β-α<π,sinα=$\frac{\sqrt{5}}{5}$,cos(β-α)=-$\frac{3\sqrt{10}}{10}$,
∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{2\sqrt{5}}{5}$,sin((β-α)=$\sqrt{{1-cos}^{2}(β-α)}$=$\frac{\sqrt{10}}{10}$.
∴cosβ=cos[(β-α)+α]=cos(β-α)cosα-sin(β-α)sinα=-$\frac{3\sqrt{10}}{10}$×(-$\frac{2\sqrt{5}}{5}$)-$\frac{\sqrt{10}}{10}$×$\frac{\sqrt{5}}{5}$=$\frac{\sqrt{2}}{2}$.
(2)根据(1)可得cosβ=$\frac{\sqrt{2}}{2}$.
再根据 $\frac{π}{2}$<α<π,$\frac{π}{2}$<β-α<π,可得π<β<2π,∴β=$\frac{7π}{4}$.
点评 本题主要考查同角三角函数的基本关系,两角和差的余弦公式,以及三角函数在各个象限中的符号,根据三角函数的值求角,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,1] | B. | (-∞,2] | C. | (1,+∞) | D. | (0,1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com