精英家教网 > 高中数学 > 题目详情

(08年山东卷)(本小题满分12分)

将数列中的所有项按每一行比上一行多一项的规则排成如下数表:

 

    

      

记表中的第一列数构成的数列为为数列的前项和,且满足

(Ⅰ)证明数列成等差数列,并求数列的通项公式;

(Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当时,求上表中第行所有项的和.

解析】(Ⅰ)证明:由已知,当时,

所以

所以

所以数列是首项为1,公差为的等差数列.

由上可知

所以当时,

因此

(Ⅱ)解:设上表中从第三行起,每行的公比都为,且

因为

所以表中第1行至第12行共含有数列的前78项,

在表中第13行第三列,

因此

所以

记表中第行所有项的和为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年山东卷文)(本小题满分14分)

已知曲线所围成的封闭图形的面积为,曲线的内切圆半径为.记为以曲线与坐标轴的交点为顶点的椭圆.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)设是过椭圆中心的任意弦,是线段的垂直平分线.上异于椭圆中心的点.

(1)若为坐标原点),当点在椭圆上运动时,求点的轨迹方程;

(2)若与椭圆的交点,求的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年山东卷理)(本小题满分12分)

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,EF分别是BC, PC的中点.

(Ⅰ)证明:AEPD;

(Ⅱ)若HPD上的动点,EH与平面PAD所成最大角的正切值为,求二面角EAFC的余弦值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年山东卷理)(本小题满分12分)

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,EF分别是BC, PC的中点.

(Ⅰ)证明:AEPD;

(Ⅱ)若HPD上的动点,EH与平面PAD所成最大角的正切值为,求二面角EAFC的余弦值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年山东卷理)(本小题满分14分)

如图,设抛物线方程为x2=2py(p>0),M为 直线y=-2p上任意一点,过M引抛物线的切线,切点分别为AB.

(Ⅰ)求证:AMB三点的横坐标成等差数列;

(Ⅱ)已知当M点的坐标为(2,-2p)时,,求此时抛物线的方程;

(Ⅲ)是否存在点M,使得点C关于直线AB的对称点D在抛物线上,其中,点C满足O为坐标原点).若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案