精英家教网 > 高中数学 > 题目详情

【题目】某企业为了了解该企业工人组装某产品所用时间,对每个工人组装一个该产品的用时作了记录,得到大量统计数据.从这些统计数据中随机抽取了个数据作为样本,得到如图所示的茎叶图(单位:分钟).若用时不超过(分钟),则称这个工人为优秀员工.

1)求这个样本数据的中位数和众数;

2)以这个样本数据中优秀员工的频率作为概率,任意调查名工人,求被调查的名工人中优秀员工的数量分布列和数学期望.

【答案】14347;(2)分布列见解析,.

【解析】

1)根据茎叶图即可得到中位数和众数;

2)根据数据可得任取一名优秀员工的概率为,故,写出分布列即可得解.

1)中位数为,众数为

2)被调查的名工人中优秀员工的数量

任取一名优秀员工的概率为,故

的分布列如下:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面的中点.

1)求证:平面

2)求直线到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以再加1;如果它是偶数,则将它除以;如此循环,最终都能够得到.下图为研究“角谷猜想”的一个程序框图.若输入的值为,则输出i的值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了保障某治疗新冠肺炎药品的主要药理成分在国家药品监督管理局规定的值范围内,武汉某制药厂在该药品的生产过程中,检验员在一天中按照规定从该药品生产线上随机抽取20件产品进行检测,测量其主要药理成分含量(单位:mg.根据生产经验,可以认为这条药品生产线正常状态下生产的产品的主要药理成分含量服从正态分布Nμσ2.在一天内抽取的20件产品中,如果有一件出现了主要药理成分含量在(μ3σμ+3σ)之外的药品,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对本次的生产过程进行检查.

1)下面是检验员在224日抽取的20件药品的主要药理成分含量:

10.02

9.78

10.04

9.92

10.14

10.04

9.22

10.13

9.91

9.95

10.09

9.96

9.88

10.01

9.98

9.95

10.05

10.05

9.96

10.12

经计算得xi9.96s0.19;其中xi为抽取的第i件药品的主要药理成分含量,i1220.用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对本次的生产过程进行检查?

2)假设生产状态正常,记X表示某天抽取的20件产品中其主要药理成分含量在(μ3σμ+3σ)之外的药品件数,求PX1)及/span>X的数学期望.

附:若随机变量Z服从正态分布Nμσ2),则Pμ3σZμ+3σ≈0.99740.997419≈0.95.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的图象在处的切线与直线平行.

(1)求函数的极值;

(2)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数,以坐标原点为极点,轴的正半轴为极轴,取相同长度单位建立极坐标系,曲线的极坐标方程为

1)求曲线的极坐标方程和曲线的普通方程;

2)设射线与曲线交于不同于极点的点,与曲线交于不同于极点的点,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若函数处的切线方程为,求 的值;

(Ⅱ)若 求函数的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)求曲线在点处的切线方程;

(2)时,若关于的方程存在两个正实数根,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与椭圆交于不同的两点.

1)若线段的中点为,求直线的方程;

2)若的斜率为,且过椭圆的左焦点的垂直平分线与轴交于点,求证:为定值.

查看答案和解析>>

同步练习册答案