精英家教网 > 高中数学 > 题目详情
已知,(其中
(1)求
(2)试比较的大小,并说明理由.
(1),
(2)当时,;当时,

试题分析:(1)根据题目特点,找特殊值代入即可求解;(2)分析题目特点,等价代换比较大小:,然后运用数学归纳法证明,先假设时结论成立,证明的第二步,即时,通过推理论证:成立.
(1)取,则;取,则

(2)要比较 的大小,即比较:的大小,
时,
时,
时,
猜想:当时,,下面用数学归纳法证明:
由上述过程可知,时结论成立,
假设当时结论成立,即
两边同乘以 得:
时,

时结论也成立,
∴当时,成立.
综上得,当时,
时,
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(1)已知,求证:
(2)已知,且
求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设S、V分别表示面积和体积,如△ABC面积用S△ABC表示,三棱锥O-ABC的体积用VO-ABC表示.对于命题:如果O是线段AB上一点,则|
OB
|•
OA
+|
OA
|•
OB
=
0
.将它类比到平面的情形是:若O是△ABC内一点,有S△OBC
OA
+S△OCA
OB
+S△OBA
OC
=
0
.将它类比到空间的情形应该是:若O是三棱锥A-BCD内一点,则有______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系中,我们称边长为1、且顶点的横、纵坐标均为整数的正方形为单位格点正方形.如图,在菱形ABCD中,四个顶点坐标分别是(-8,0),(0,4),(8,0),(0,-4),则菱形ABCD能覆盖的单位格点正方形的个数是______个;若菱形AnBnCnDn的四个顶点坐标分别为(-2n,0),(0,n),(2n,0),(0,-n)(n为正整数),则菱形AnBnCnDn能覆盖的单位格点正方形的个数为______(用含有n的式子表示).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

3
6
=
5
10
=
7
14
,则边长分别为3,5,7和6,10,14的两个三角形相似”这个推理的大前提是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是(    )
A.假设三内角都不大于60度
B.假设三内角都大于60度
C.假设三内危至多有一个大于60度
D.假设三内角至多有两个大于60度

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用反证法证明命题:“若整系数一元二次方程有有理根,那么中至少有一个是偶数时,下列假设中正确的是
A.假设都是偶数
B.假设都不是偶数
C.假设至多有一个是偶数
D.假设至多有两个是偶数

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若a,b∈R,则下面四个式子中恒成立的是(  )
A.lg(1+a2)>0B.a2+b2≥2(a-b-1)
C.a2+3ab>2b2D.<

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用反证法证明命题“若都是正数,则三数中至少有一个不小于”,提出的假设是(     )
A.不全是正数
B.至少有一个小于
C.都是负数
D.都小于2

查看答案和解析>>

同步练习册答案