【题目】已知函数的值域是,有下列结论:①当时,; ②当时,;③当时,; ④当时,.其中结论正确的所有的序号是( ).
A.①②B.③④C.②③D.②④
【答案】C
【解析】
根据函数函数的单调性及分段函数的定义,画出函数图象,根据图象即可求得答案.
解:当x>1时,x﹣1>0,f(x)=22﹣x+1﹣3=23﹣x﹣3,单调递减,
当﹣1<x<1时,f(x)=22+x﹣1﹣3=21+x﹣3,单调递增,
∴在(﹣1,1)单调递增,在(1,+∞)单调递减,
∴当x=1时,取最大值为1,
∴绘出的图象,如图下方曲线:
①当n=0时,f(x),
由函数图象可知:
要使f(x)的值域是[﹣1,1],
则m∈(1,2];故①错误;
②当时,f(x),
f(x)在[﹣1,]单调递增,f(x)的最大值为1,最小值为﹣1,
∴;故②正确;
③当时,m∈[1,2];故③正确,④错误,
故选:C.
科目:高中数学 来源: 题型:
【题目】双曲线绕坐标原点旋转适当角度可以成为函数的图象,关于此函数有如下四个命题:① 是奇函数;② 的图象过点或;③ 的值域是;④ 函数有两个零点;则其中所有真命题的序号为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)取何值时,方程()无解?有一解?有两解?有三解?
(2)函数的性质通常指函数的定义域、值域、周期性、单调性、奇偶性等,请选择适当的探究顺序,研究函数的性质,并在此基础上,作出其在的草图;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,如果存在实数(,且不同时成立),使得对恒成立,则称函数为“映像函数”.
(1)判断函数是否是“映像函数”,如果是,请求出相应的的值,若不是,请说明理由;
(2)已知函数是定义在上的“映像函数”,且当时,.求函数()的反函数;
(3)在(2)的条件下,试构造一个数列,使得当时,,并求时,函数的解析式,及的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
(本题满分15分)已知m>1,直线,
椭圆,分别为椭圆的左、右焦点.
(Ⅰ)当直线过右焦点时,求直线的方程;
(Ⅱ)设直线与椭圆交于两点,,
的重心分别为.若原点在以线段
为直径的圆内,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,△ABC为一个等腰三角形形状的空地,腰CA的长为3(百米),底AB的长为4(百米).现决定在该空地内筑一条笔直的小路EF(宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等、面积分别为S1和S2.
(1) 若小路一端E为AC的中点,求此时小路的长度;
(2) 求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,过椭圆E的左焦点且与x轴垂直的直线与椭圆E相交于的P,Q两点,O为坐标原点,的面积为.
(1)求椭圆E的方程;
(2)点M,N为椭圆E上不同两点,若,求证:的面积为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com