精英家教网 > 高中数学 > 题目详情

【题目】已知直线lρsin=4和圆Cρ=2kcos(k≠0),若直线l上的点到圆C上的点的最小距离等于2.求实数k的值并求圆心C的直角坐标.

【答案】k=-1,

【解析】

把直线和圆的极坐标方程化为直角坐标方程,求得圆心C到直线的距离d=|k+4|,由d﹣r=2,求得k的值,可得圆心坐标.

ρkcos θksin θ

ρ2cos θsin θ

∴圆C的直角坐标方程为x2y2kxky=0,

∴圆心的直角坐标为.

ρsin θ·ρcos θ·=4,

∴直线l的直角坐标方程为xy+4=0,

-|k|=2.

|k+4|=2+|k|,

两边平方,得|k|=2k+3,

解得k=-1,故圆心C的直角坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面四边形ABCD中,AB=5 , ∠CBD=75°,∠ABD=30°,∠CAB=45°,∠CAD=60°.
(I)求AC的长;
(Ⅱ)求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1:2x-y+6=0和直线l2:x=-1,F是抛物线C:y2=4x的焦点,点P在抛物线C上运动,当点P到直线l1和直线l2的距离之和最小时,直线PF被抛物线所截得的线段长是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sin(x+)(x∈R)的图象上所有点的纵坐标不变横坐标缩小到原来的 , 再把图象上各点向左平移个单位长度,则所得的图象的解析式为( )
A.y=sin(2x+
B.y=sin(x+
C.y=sin(2x+
D.y=sin(x+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x﹣4)2+(y﹣5)2=4
若直线l过点A(4,0),且被圆C1截得的弦长为2 , 求直线l的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+4|-|x-1|.

(1)解不等式f(x)>3;

(2)若不等式f(x)+1≤4a-5×2a有解求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)同时满足以下三个性质;①f(x)的最小正周期为π;②对任意的x∈R,都有f(x﹣ )=f(﹣x);③f(x)在( )上是减函数.则f(x)的解析式可能是(
A.f(x)=cos(x+
B.f(x)=sin2x﹣cos2x
C.f(x)=sinxcosx
D.f(x)=sin2x+cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率

(I)求椭圆的标准方程;

(II)与圆相切的直线交椭圆于两点,若椭圆上一点满足,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆)的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为,一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线与椭圆的交点分别为

(1)求椭圆和双曲线的标准方程;

(2)设直线的斜率分别为,证明为定值;

(3)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案