精英家教网 > 高中数学 > 题目详情
8.已知数列{an}和{bn}都是等差数列,若a2+b2=3,a4+b4=5,则a7+b7=(  )
A.7B.8C.9D.10

分析 由数列{an}和{bn}都是等差数列,得{an+bn}为等差数列,由已知求出{an+bn}的公差,再代入等差数列通项公式求得a7+b7

解答 解:∵数列{an}和{bn}都是等差数列,∴{an+bn}为等差数列,
由a2+b2=3,a4+b4=5,得d=$\frac{({a}_{4}+{b}_{4})-({a}_{2}+{b}_{2})}{4-2}=\frac{5-3}{2}=1$.
∴a7+b7=(a4+b4)+3×1=5+3=8.
故选:B.

点评 本题考查等差数列的通项公式,关键是由数列{an}和{bn}都是等差数列,得{an+bn}为等差数列,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系中,定义$\left\{\begin{array}{l}{{x}_{n+1}={y}_{n}-{x}_{n}}\\{{y}_{n+1}={y}_{n}+{x}_{n}}\end{array}\right.$(n∈N*为点Pn(xn,yn)到点Pn+1(xn+1,yn+1)的一个变换,我们把它称为点变换.已知P1(0,1),P2(x2,y2),…,Pn(xn,yn),Pn+1(xn+1,yn+1)是经过点变换得到的一列点.设an=|PnPn+1|,数列{an}的前n项和为Sn,那么$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{a}_{n}}$的值为=2+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}为等差数列,是${a}_{1}^{2}$+${a}_{7}^{2}$≤10,则a4的最大值是?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,在区间(0,1)上是增函数的是(  )
A.y=-x+1B.y=$\sqrt{x}$C.y=x2-4x+5D.y=$\frac{2}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知集合A={1,2},B={x|ax+1=0},且A∪B=A,则a的值组成的集合为{0,-1,-$\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知定义域为R的奇函数满足f(x+4)=f(x),且x∈(0,2)时,f(x)=ln(x2+a),a>0,若函数f(x)在区间[-4,4]上有9个零点,则实数a的取值范围为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知定义域为R的奇函数满足f(x+4)=f(x)+f(2),且x∈(0,2)时,f(x)=lnx,则函数f(x)在区间[-4,4]上有9个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=2sin(2x+$\frac{π}{6}$)+1+a,x∈[0,$\frac{3π}{4}$]
(1)求单调递增区间;
(2)若方程f(x)=0在[0,$\frac{3π}{4}$]上有两个不同的实根.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.画出下列函数在长度为一个周期的闭区间上的简图(有条件的请用计算器或计算机检验).
(1)y=$\frac{1}{2}$sinx;
(2)y=sin3x;
(3)y=sin(x-$\frac{π}{3}$);
(4)y=2sin(2x-$\frac{π}{4}$).

查看答案和解析>>

同步练习册答案