精英家教网 > 高中数学 > 题目详情
19.已知a>0,函数f(x)=ax2+bx+c,若x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是(3)
(1)?x∈R,f(x)≤f(x0)        (2)?x∈R,f(x)≥f(x0)    
(3)?x∈R,f(x)≤f(x0)           (4)?x∈R,f(x)≥f(x0

分析 由抛物线的性质可得开口向上,x0=-$\frac{b}{2a}$为抛物线的对称轴,逐个选项验证可得.

解答 解:∵a>0,∴f(x)=ax2+bx+c所对应的抛物线开口向上,
又∵x0满足关于x的方程2ax+b=0,∴x0=-$\frac{b}{2a}$为抛物线的对称轴,
∴f(x0)为二次函数f(x)的最小值,
(1)?x∈R,f(x)≤f(x0)正确;
(2)?x∈R,f(x)≥f(x0) 正确;   
(3)?x∈R,f(x)≤f(x0)错误;
(4)?x∈R,f(x)≥f(x0)正确.
故答案为:(3).

点评 本题考查命题真假的判断,涉及二次函数的性质和特称命题以及全称命题,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知点A(1,-1)及圆x2+y2-4x+4y=0,则过点A,且在圆上截得的弦最长的直线方程是(  )
A.x-1=0B.x+y=0C.y+1=0D.x-y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.等比数列{an}的各项均为正数,且2a1+3a2=1,${a_3}^2$=9a2a6.求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{4}$=1(a>0)的实轴长、虚轴长、焦距长成等差数列,则双曲线的渐近线方程为(  )
A.y=$±\frac{5}{4}$xB.y=$±\frac{4}{5}$xC.y=$±\frac{3}{4}$xD.y=$±\frac{4}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若等差数列{an}的前三项和S3=15,则a2等于(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若(m-1)+(3m+2)i是纯虚数,则实数m的值为(  )
A.1B.1或2C.0D.-1、1、2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=(1+$\sqrt{3}$tanx)cosx.
(1)求f(x)的最小正周期;
(2)求f(x)的单调增区间;
(3)求f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.抛物线C:x2=2py(p>0)的焦点到其准线的距离是2.
(1)求抛物线C的标准方程;
(2)直线l与抛物线C交于A,B两点,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=-4,且|$\overrightarrow{AB}$|=4$\sqrt{6}$,求直线l的方程.(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知i为虚数单位,则i+i2+i3+…+i2015=-1.

查看答案和解析>>

同步练习册答案