【题目】命题p:方程x2+mx+1=0有两个不等的正实数根,命题q:方程4x2+4(m+2)x+1=0无实数根.若“p或q”为真命题,求m的取值范围.
【答案】解:“p或q”为真命题,则p为真命题,或q为真命题.
当p为真命题时,则 ,得m<﹣2;
当q为真命题时,则△=16(m+2)2﹣16<0,得﹣3<m<﹣1
∴“p或q”为真命题时,m<﹣1
【解析】“p或q”为真命题,即p和q中至少有一个真命题,分别求出p和q为真命题时对应的范围,再求并集.
命题p:方程x2+mx+1=0有两个不等的正实数根 ,命题q:方程4x2+4(m+2)x+1=0无实数根△<0.
【考点精析】通过灵活运用复合命题的真假,掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真即可以解答此题.
科目:高中数学 来源: 题型:
【题目】某互联网理财平台为增加平台活跃度决定举行邀请好友拿奖励活动,规则是每邀请一位好友在该平台注册,并购买至少1万元的12月定期,邀请人可获得现金及红包奖励,现金奖励为被邀请人理财金额的,且每邀请一位最高现金奖励为300元,红包奖励为每邀请一位奖励50元.假设甲邀请到乙、丙两人,且乙、丙两人同意在该平台注册,并进行理财,乙、丙两人分别购买1万元、2万元、3万元的12月定期的概率如下表:
理财金额 | 万元 | 万元 | 万元 |
乙理财相应金额的概率 | |||
丙理财相应金额的概率 |
(1)求乙、丙理财金额之和不少于5万元的概率;
(2)若甲获得奖励为元,求的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项等差数列{an}的前n项和为Sn , 且满足 ,S7=56. (Ⅰ)求数列{an}的通项公式an;
(Ⅱ)若数列{bn}满足b1=a1且bn+1﹣bn=an+1 , 求数列 的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设O为坐标原点,曲线x2+y2+2x﹣6y+1=0上有两点P、Q,满足关于直线x+my+4=0对称,又满足 =0.
(1)求m的值;
(2)求直线PQ的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2cosx(sinx﹣cosx)+1,x∈R.
(1)求函数f(x)的单调递增区间;
(2)将函数y=f(x)的图象向左平移 个单位后,再将图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的最大值及取得最大值时的x的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若两条异面直线所成的角为90°,则称这对异面直线为“理想异面直线对”,在连接正方体各顶点的所有直线中,“理想异面直线对”的对数为( )
A.24
B.48
C.72
D.78
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一艘船在航行过程中发现前方的河道上有一座圆拱桥.在正常水位时,拱桥最高点距水面8m,拱桥内水面宽32m,船只在水面以上部分高6.5m,船顶部宽8m,故通行无阻,如图所示.
(1)建立适当的平面直角坐标系,求正常水位时圆弧所在的圆的方程;
(2)近日水位暴涨了2m,船已经不能通过桥洞了.船员必须加重船载,降低船身在水面以上的高度,试问:船身至少降低多少米才能通过桥洞?(精确到0.1m, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设双曲线 的离心率e=2,右焦点为F(c,0),方程ax2+bx﹣c=0的两个实根分别为x1和x2 , 则点P(x1 , x2) 满足( )
A.必在圆x2+y2=2内
B.必在圆x2+y2=2外
C.必在圆x2+y2=2上
D.以上三种情形都有可能
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com