精英家教网 > 高中数学 > 题目详情

 (本小题满分12分) 甲、乙两人玩转盘游戏,该游戏规则是这样的:一个质地均匀的标有12等分数字格的转盘(如图),甲、乙两人各转转盘一次,转盘停止时指针所指的数字为该人的得分。(假设指针不能指向分界线)现甲先转,乙后转,求下列事件发生的概率

(1)甲得分超过7分的概率.

(2)甲得7分,且乙得10分的概率

(3) 甲得5分且获胜的概率。

解:(1)甲先转,甲得分超过7分为事件A,

记事件A1:甲得8分,记事件A2:甲得9分,

记事件A3:甲得10分,记事件A4:甲得11分,

记事件A5:甲得12分,

由几何概型求法,以上事件发生的概率均为,

甲得分超过7分为事件A, A= A1 ∪A2 ∪A3∪ A4 ∪A5

P(A)=P(A1 ∪A2 ∪A3∪ A4 ∪A5)=    

(2) 记事件C:甲得7分并且乙得10分,

以甲得分为x, 乙得分为y,组成有序实数对(x,y),可以发现,x=1的数对有12个,同样x等于2,3,4, 5,6,7,8,9,10,11,12的数对也有12个,所以这样的有序实数对(x,y)有144个,

其中甲得7分,乙得10分为(7,10)共1个,

P(C)=                                          

(3)甲先转,得5分,且甲获胜的基本事件为(5,4)(5,3)(5,2)(5,1)

则甲获胜的概率P(D)=              

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案