精英家教网 > 高中数学 > 题目详情

【题目】一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为)件.时,年销售总收人为()万元;当时,年销售总收人为万元.记该工厂生产并销售这种产品所得的年利润为万元.(年利润=年销售总收入一年总投资)

(1)(万元)()的函数关系式;

(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?

【答案】1);(2)当年产量为件时,所得年利润最大,最大年利润为万元.

【解析】

1)根据已知条件,分当时和当时两种情况,分别求出年利润的表达式,综合可得答案;

2)根据(1)中函数的解析式,求出最大值点和最大值即可.

1)由题意得:当时,

时,

);

2)当时,

时,

而当时,

故当年产量为件时,所得年利润最大,最大年利润为万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[2018·赣中联考]李冶(1192-1279),真实栾城(今属河北石家庄市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径、正方形的边长等.其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)(

A. 10步,50 B. 20步,60 C. 30步,70 D. 40步,80

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为常数)

1)求的单调增区间;

2)若时,的最大值为,求的值;

3)求取最大值时的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列四个命题:

①函数满足:对任意

②函数均为奇函数;

③若函数上有意义,则的取值范围是

④设是关于的方程,()的两根,;

其中正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,平面平面,四边形为正方形,四边形为梯形,且

1)求证:平面

2)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为偶函数.

1)求实数的值,并写出在区间上的增减性和值域(不需要证明);

2)令,其中,若对任意,总有,求的取值范围;

3)令,若对任意,总有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的最小正周期、单调区间;

2)求函数在区间上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱柱ABCA1B1C1中,侧棱AA1⊥底面A1B1C1AA11,底面三角形A1B1C1是边长为2的正三角形,EBC中点,则下列说法正确的是(

CC1AB1所成角的余弦值为

AB⊥平面ACC1A1

③三角形AB1E为直角三角形

A1C1∥平面AB1E

A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】5名男生3名女生参加升旗仪式:

(1)站两横排,3名女生站前排,5名男生站后排有多少种站法?

(2)站两纵列,每列4人,每列都有女生且女生站在男生前面,有多少种排列方法?

查看答案和解析>>

同步练习册答案