【题目】一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为()件.当时,年销售总收人为()万元;当时,年销售总收人为万元.记该工厂生产并销售这种产品所得的年利润为万元.(年利润=年销售总收入一年总投资)
(1)求(万元)与(件)的函数关系式;
(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?
科目:高中数学 来源: 题型:
【题目】[2018·赣中联考]李冶(1192-1279),真实栾城(今属河北石家庄市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径、正方形的边长等.其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)( )
A. 10步,50步 B. 20步,60步 C. 30步,70步 D. 40步,80步
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下列四个命题:
①函数满足:对任意有;
②函数均为奇函数;
③若函数在上有意义,则的取值范围是;
④设是关于的方程,(且)的两根,则;
其中正确命题的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体中,平面平面,四边形为正方形,四边形为梯形,且,,.
(1)求证:平面;
(2)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为偶函数.
(1)求实数的值,并写出在区间上的增减性和值域(不需要证明);
(2)令,其中,若对任意、,总有,求的取值范围;
(3)令,若对任意、,总有,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面A1B1C1,AA1=1,底面三角形A1B1C1是边长为2的正三角形,E是BC中点,则下列说法正确的是( )
①CC1与AB1所成角的余弦值为
②AB⊥平面ACC1A1
③三角形AB1E为直角三角形
④A1C1∥平面AB1E
A.①②B.③④C.①③D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】5名男生3名女生参加升旗仪式:
(1)站两横排,3名女生站前排,5名男生站后排有多少种站法?
(2)站两纵列,每列4人,每列都有女生且女生站在男生前面,有多少种排列方法?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com