精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)判断函数在区间上的单调性;

(Ⅱ)若函数在区间上满足恒成立,求实数a的最小值.

【答案】(1) 单调递减.(2)1

【解析】试题分析:(1)先求导数得,再研究,得在区间上恒小于零,可得在区间上恒小于零,即得函数单调性(2)由不等式恒成立得,再利用洛必达法则求,即得 ,可得实数a的最小值.

试题解析:解:(Ⅰ)当时,

,显然当时,

,即函数在区间的单调递减,且

从而函数在区间上恒小于零

所以在区间上恒小于零,函数在区间上单调递减.

(Ⅱ)由于,不等式恒成立,即恒成立

,且

时,在区间,即函数单调递减,

所以,即恒成立

时, 在区间上存在唯一解

时, ,故在区间上单调递增,且

从而在区间上大于零,这与恒成立相矛盾 当时,在区间,即函数单调递增,且

恒成立,这与恒成立相矛盾

故实数a的最小值为1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是直角梯形, ,又,直线与直线所成的角为

(1)求证:

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以A表示值域为R的函数组成的集合,B表示具有如下性质的函数组成的集合:对于函数,存在一个正数M,使得函数的值域包含于区间[-M,M]。例如,当 时, ,现有如下命题:

①设函数的定义域为D,则“”的充要条件是“

②若函数,则有最大值和最小值;

③若函数 的定义域相同,且 ,则

④若函数,则有最大值且

其中的真命题有_____________。(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ).

(1)如果曲线在点处的切线方程为,求 的值;

(2)若 ,关于的不等式的整数解有且只有一个,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲,乙,丙,丁四名同学做传递手帕游戏(每位同学传递到另一位同学记传递1次),手帕从甲手中开始传递,经过5次传递后手帕回到甲手中,则共有__________种不同的传递方法.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

I)若曲线存在斜率为-1的切线,求实数a的取值范围;

II)求的单调区间;

III)设函数,求证:当时, 上存在极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为减少汽车尾气排放,提高空气质量,各地纷纷推出汽车尾号限行措施.为做好此项工作,某市交警支队对市区各交通枢纽进行调查统计,表中列出了某交通路口单位时间内通过的1000辆汽车的车牌尾号记录:

由于某些数据缺失,表中以英文字母作标识.请根据图表提供的信息计算:

(Ⅰ)若采用分层抽样的方法从这1000辆汽车中抽出20辆,了解驾驶员对尾号限行的建议,应分别从一、二、三、四组中各抽取多少辆?

(Ⅱ)以频率代替概率,在此路口随机抽取4辆汽车,奖励汽车用品.用表示车尾号在第二组的汽车数目,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015 年 12 月,华中地区数城市空气污染指数“爆表”,此轮污染为 2015 年以来最严重的污染过程,为了探究车流量与的浓度是否相关,现采集到华中某城市 2015 年 12 月份某星期星期一到星期日某一时间段车流量与的数据如表:

时间

星期一

星期二

星期三

星期四

星期五

星期六

星期日

车流量(万辆)

1

2

3

4

5

6

7

的浓度(微克/立方米)

28

30

35

41

49

56

62

(1)由散点图知具有线性相关关系,求关于的线性回归方程;(提示数据:

(2)利用(1)所求的回归方程,预测该市车流量为 12 万辆时的浓度.

参考公式:回归直线的方程是

其中.

查看答案和解析>>

同步练习册答案