精英家教网 > 高中数学 > 题目详情
11.已知复数$z=1+\sqrt{3}•i$(i为虚数单位),则|z|=2.

分析 利用复数模的计算公式即可得出.

解答 解:复数$z=1+\sqrt{3}•i$(i为虚数单位),
则|z|=$\sqrt{{1}^{2}+(\sqrt{3})^{2}}$=2.
故答案为:2、

点评 本题考查了复数模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.函数$f(x)=\frac{{lg({x+1})}}{x-2}$的定义域为{x|x>-1且x≠2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.命题“3mx2+mx+1>0恒成立”则实数m的取值范围为[0,12).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{1}{2}$,两焦点之间的距离为4.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过椭圆的右顶点作直线交抛物线y2=4x于A,B两点,求证:OA⊥OB(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知正数数列{an}的前n项和${S_n}=\frac{1}{4}{({{a_n}+1})^2}$,则an=2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设椭圆$\frac{x^2}{4}+{y^2}=1$的两个焦点为F1,F2,M是椭圆上任一动点,则$\overrightarrow{M{F_1}}•\overrightarrow{M{F_2}}$的取值范围为[-2,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知A是圆锥的顶点,BD是圆锥底面的直径,C是底面圆周上一点,BD=2,BC=1,AC与底面所成角的大小为$\frac{π}{3}$,过点A作截面ABC,ACD,截去部分后的几何体如图所示.
(1)求原来圆锥的侧面积;
(2)求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,角A,B,C的对边分别是a,b,c,已知$b=2,c=2\sqrt{2}$,且$C=\frac{π}{4}$,则△ABC的面积为(  )
A.$\sqrt{3}+1$B.$\sqrt{3}-1$C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|-2≤x≤2},B={x|x>1}
(1)求A∩B,A∪B,(∁uB)∩A;
(2)设集合M={x|a<x<a+6},且A⊆M,求实数a的取值范围.

查看答案和解析>>

同步练习册答案