精英家教网 > 高中数学 > 题目详情
已知四面体ABCD的六条棱长都是1,则直线AD与平面ABC的夹角的余弦值为______.
设D点底面ABC上的投影为E,则E为△ABC的中心
连接AE、DE,则∠DAE即为直线AD与平面ABC的夹角
∵四面体ABCD的六条棱长都是1,
∴AE=
3
3

则cos∠DAE=
AE
AD
=
3
3

故答案为:
3
3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知A、B、C是球O的球面上三点,∠BAC=90°,AB=2,BC=4,球O的表面积为48π,则异面直线AB与OC所成角余弦值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在侧棱垂直底面的四棱柱ABCD-A1B1C1D1中,ADBC,AD⊥AB,AB=
2
.AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点.
(1)证明:
(i)EFA1D1
(ii)BA1⊥平面B1C1EF;
(2)求BC1与平面B1C1EF所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

下图是几何体ABC-A1B1C1的三视图和直观图.M是CC1上的动点,N,E分别是AM,A1B1的中点.
(1)求证:NE平面BB1C1C;
(2)当M在CC1的什么位置时,B1M与平面AA1C1C所成的角是30°.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正四面体ABCD的棱长为a,点O是△BCD的中心,点M是CD中点.
(1)求点A到面BCD的距离;
(2)求AB与面BCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正方体ABCD-A1B1C1D1,则直线AB与平面BDA1所成角的正弦值等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四边形ABCD中,AB=AD=4,BC=CD=
7
,点E为线段AD上的一点.现将△DCE沿线段EC翻折到PAC,使得平面PAC⊥平面ABCE,连接PA,PB.
(Ⅰ)证明:BD⊥平面PAC;
(Ⅱ)若∠BAD=60°,且点E为线段AD的中点,求直线PE与平面ABCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,BC1与平面BDD1B1所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,△ABC是等腰直角三角形∠ACB=90°,AC=2a,D,E分别为AC,AB的中点,沿DE将△ADE折起,得到如图所示的四棱锥A′-BCDE
(Ⅰ)在棱A′B上找一点F,使EF平面A′CD;
(Ⅱ)当四棱锥A'-BCDE体积取最大值时,求平面A′CD与平面A′BE夹角的余弦值.

查看答案和解析>>

同步练习册答案