精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左右焦点分别为,其焦距为,点在椭圆上,,直线的斜率为为半焦距)·

1)求椭圆的方程;

2)设圆的切线交椭圆两点(为坐标原点),求证:

3)在(2)的条件下,求的最大值

【答案】1;(2)见解析;(3

【解析】

(1)由题意知 ,,解得 即可.

(2)(i)当切线与坐标轴垂直时,满足,(ii)当切线与坐标轴不垂直时,设圆的切线为y=kx+m,得,A(x1,y1),B(x2,y2),利用,即可证明.

(3 )当切线与坐标轴垂直时|OA||OB|=4,当切线与坐标轴不垂直时,由(2)知,且,即可得OA||OB|的最大值.

(1)连接,由题意知

解得 ,

椭圆的方程为 .

(2)(i)当切线与坐标轴垂直时,交点坐标为,满足.

(ii)当切线与坐标轴不垂直时,设切线为

由圆心到直线距离为

联立椭圆方程得 恒成立,设

满足 .

(3 )当切线与坐标轴垂直时

当切线与坐标轴不垂直时,由(2)知

.

当且仅当时等号成立,

综上所述,的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某小区为了加强对“新型冠状病毒”的防控,确保居民在小区封闭期间生活不受影响,小区超市采取有力措施保障居民正常生活物资供应.为做好甲类生活物资的供应,超市对社区居民户每天对甲类生活物资的购买量进行了调查,得到了以下频率分布直方图.

1)从小区超市某天购买甲类生活物资的居民户中任意选取5.

①若将频率视为概率,求至少有两户购买量在(单位:)的概率是多少?

②若抽取的5户中购买量在(单位:)的户数为2户,从5户中选出3户进行生活情况调查,记3户中需求量在(单位:)的户数为,求的分布列和期望;

2)将某户某天购买甲类生活物资的量与平均购买量比较,当超出平均购买量不少于时,则称该居民户称为“迫切需求户”,若从小区随机抽取10户,且抽到k户为“迫切需求户”的可能性最大,试求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆上不同的两点,的中点坐标为

1)证明:直线经过椭圆的右焦点.

2)设直线不经过点且与椭圆相交于两点,若直线与直线的斜率的和为1,试判断直线是否经过定点,若经过定点,请求出该定点;若不经过定点,请给出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)求函数的单调区间;

2)若对任意,任意,不等式恒成立时最大的记为,当时,的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,错误命题是

A. ,则的逆命题为真

B. 线性回归直线必过样本点的中心

C. 在平面直角坐标系中到点的距离的和为的点的轨迹为椭圆

D. 在锐角中,有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的极坐标方程和的直角坐标方程;

2)直线与曲线分別交于第一象限内两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知抛物线,过抛物线焦点且与轴垂直的直线与抛物线相交于两点,且的周长为.

(1)求抛物线的方程;

(2)若直线过焦点且与抛物线相交于两点,过点分别作抛物线的切线,切线相交于点,求:的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当 时,求函数图象在点处的切线方程;

(2)当时,讨论函数的单调性;

(3)是否存在实数,对任意恒成立?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若恒成立,求实数的取值范围;

2)求证:时,.

查看答案和解析>>

同步练习册答案