精英家教网 > 高中数学 > 题目详情
4.四面体ABCD的四个顶点都在球O的球面上,AB⊥平面BCD,△BCD是边长为3的等边三角形,若AB=2,则球O的表面积为16π.

分析 取CD的中点E,连结AE,BE,作出外接球的球心,求出半径,即可求出表面积.

解答 解:取CD的中点E,连结AE,BE,∵在四面体ABCD中,AB⊥平面BCD,
△BCD是边长为3的等边三角形.
∴Rt△ABC≌Rt△ABD,△ACD是等腰三角形,
△BCD的中心为G,作OG∥AB交AB的中垂线HO于O,O为外接球的中心,
BE=$\frac{3\sqrt{3}}{2}$,BG=$\sqrt{3}$,
R=$\sqrt{3+1}$=2.
四面体ABCD外接球的表面积为:4πR2=16π.
故答案为:16π.

点评 本题考查球的内接体知识,考查空间想象能力,确定球的切线与半径是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=x2-2x+3,则f(-1)=(  )
A.2B.6C.-2D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四棱锥E-ABCD中,平面ABE⊥平面ABCD,侧面ABE是等腰直角三角形,EA⊥EB,底面ABCD是直角梯形,且AB∥CD,AB⊥BC,AB=2CD=2BC=2,
(1)求证:AB⊥DE;
(2)求三棱锥C-BDE的体积;
(3)若点F是线段EA上一点,当EC∥平面FBD时,求EF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知m∈R,直线l:mx-(m2+1)y=4m和圆C:x2+y2-8x+4y+16=0.
(1)求直线l的斜率的取值范围;
(2)直线l能否将圆C分割成弦长的比值为1:2的两段圆弧?若能,求出直线l的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在正方体中,异面直线AA1与BD1所成的角为α,则有cosα=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知直线l的方程为y=kx-1,圆的方程为x2+y2-2x+4y+4=0.若直线l与圆相交截得的弦长为$\sqrt{3}$,求直线l的斜率k.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.等差数列{an}的前n项为Sn,若公差d=-2,S3=21,则当Sn取得最大值时,n的值为(  )
A.10B.9C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=2sin(ωx+$\frac{π}{3}$)(ω>0,x∈R),且以2π为最小正周期.
(Ⅰ)求f(π)的值;
(Ⅱ)已知f(a+$\frac{π}{6}$)=$\frac{10}{13}$,a∈(-$\frac{π}{2}$,0),求sin(a-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点M在线段AB上,且$\frac{AM}{MB}$=$\frac{7}{3}$,则BM=$\frac{3}{10}$AB.

查看答案和解析>>

同步练习册答案