【题目】将函数f(x)=sin(2x+φ)(0<φ<π)的图象向左平移 个单位后得到函数y=g(x)的图象,若y=g(x)是偶函数,则φ= .
科目:高中数学 来源: 题型:
【题目】在直角坐标系内,已知A(3,3)是⊙C上一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为x﹣y+1=0和x+y﹣7=0,若⊙C上存在点P,使∠MPN=90°,其中M、N的坐标分别为(﹣m,0)(m,0),则m的最大值为( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+4x+a﹣5,g(x)=m4x﹣1﹣2m+7.
(1)若函数f(x)在区间[﹣1,1]上存在零点,求实数a的取值范围;
(2)当a=0时,若对任意的x1∈[1,2],总存在x2∈[1,2],使f(x1)=g(x2)成立,求实数m的取值范围;
(3)若y=f(x)(x∈[t,2])的置于为区间D,是否存在常数t,使区间D的长度为6﹣4t?若存在,求出t的值;若不存在,请说明理由. (注:区间[p,q]的长度q﹣p)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.
(1)已知甲船上有男女乘客各3名,现从中任选3人出来做某件事情,求所选出的人中恰有一位女乘客的概率;
(2)如果甲船的停泊时间为4小时,乙船的停泊时间为2小时,求它们中的任何一条船不需要等待码头空出的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx﹣ )(其中A,ω为常数,且A>0,ω>0)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)若f(α+ )= ,f(β+ )= ,且α,β∈(0, ),求α+β的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的中心在原点,焦点在x轴上,离心率等于 ,它的一个短轴端点是(0,2 ).
(1)求椭圆C的方程;
(2)P(2,3)、Q(2,﹣3)是椭圆上两点,A、B是椭圆位于直线PQ两侧的两动点,
①若直线AB的斜率为 ,求四边形APBQ面积的最大值;
②当A、B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的中心在原点O,短轴长为 ,左焦点为F(﹣c,0)(c>0),直线 与x轴交于点A,且 ,过点A的直线与椭圆相交于P,Q两点.
(1)求椭圆的方程.
(2)若 ,求直线PQ的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=2sin(2x+ ),g(x)=mcos(2x﹣ )﹣2m+3(m>0),若对任意x1∈[0, ],存在x2∈[0, ],使得g(x1)=f(x2)成立,则实数m的取值范围是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com