精英家教网 > 高中数学 > 题目详情
1.条件p:|x一2|>3.条件q:|x-a|>x-a.若q是p的充分条件.求a的取值范围.

分析 先求出关于p,q的x的范围,结合q是p的充分条件,求出a的范围即可.

解答 解:条件p:|x一2|>3,解得:x>5或x<-1;
条件q:|x-a|>x-a,解得:x<a,
若q是p的充分条件.
则a≤-1.

点评 本题考查了充分必要条件,考查集合的包含关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,河的两岸,分别有生活小区ABC和DEF,其中AB⊥BC,EF⊥DF,DF⊥AB,C,E,F三点共线,FD与BA的延长线交于点O,测得AB=3km,BC=4km,DF=$\frac{9}{4}$km,FE=3km,EC=$\frac{3}{2}$km.若以OA,OD所在直线为x,y轴建立平面直角坐标系xoy,则河岸DE可看成是曲线y=$\frac{x+b}{x+a}$(其中a,b为常数)的一部分,河岸AC可看成是直线y=kx+m(其中k,m为常数)的一部分.
(1)求a,b,k,m的值;
(2)现准备建一座桥MN,其中M,N分别在DE,AC上,且MN⊥AC,设点M的横坐标为t.
①请写出桥MN的长l关于t的函数关系式l=f(t),并注明定义域;
②当t为何值时,l取得最小值?最小值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知cosθ=$\frac{5}{13}$,θ∈(π,2π),求sin($θ-\frac{π}{6}$),cos($θ-\frac{π}{6}$)及tan($θ-\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知角α的终边在图中阴影表示的范围内(不包括边界),那么角α的集合是{α|k•180°+45°<α<k•180°+135°,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.O为△ABC内任意一点,如图所示,D,E,F分别是AB,BC,CA的中点.求证:$\overrightarrow{OA}$$+\overrightarrow{OB}$$+\overrightarrow{OC}$=$\overrightarrow{OD}$$+\overrightarrow{OE}$$+\overrightarrow{OF}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,内角A、B、C的对边分别为a、b、c,且b2=a2+bc,A=$\frac{π}{6}$,D点在边AC上,当线段BD的长最小,则$\frac{CD}{AB}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.数列{an}满足a1=0,an+1=$\frac{{a}_{n}-\sqrt{3}}{\sqrt{3}{a}_{n}+1}$,n∈N*,求a100,S2015

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=4x3-3x2cosθ+$\frac{3}{16}$cosθ其中x∈R,θ为参数,且0≤θ≤2π.
(1)当cosθ=0时,判断函数f(x)是否有极值;
(2)要使函数f(x)的极小值大于零,求参数θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知x>0,y>0,且$\frac{1}{x+1}+\frac{9}{y}$=1,则4x+y的最小值为21.

查看答案和解析>>

同步练习册答案