【题目】已知函数
(1)若,函数的极大值为,求实数的值;
(2)若对任意的在上恒成立,求实数的取值范围.
【答案】(1)(2)
【解析】试题分析:(1)第(1)问,先求导,对a分类讨论,求出每一种情况下的极大值,得到a的方程,即可求出实数a的值. (2)第(2)问,令,转化成证明g(a)的最大值小于等于在上恒成立,再分离参数对恒成立,再利用导数求右边函数的最大值得解.
试题解析:
(1)∵,
∴
①当时, ,
令,得; ,得,
所以在上单调递增, 上单调递减.
所以的极大值为,不合题意.
②当时, ,
令,得; ,得或,
所以在上单调递增, 和上单调递减.
所以的极大值为,解得.符合题意.
综上可得.
(2)令,
当时, , 在上是增函数
则对恒成立等价于,
即对恒成立.
即对恒成立
令
在上单调递减。
所以实数的取值范围为.
科目:高中数学 来源: 题型:
【题目】某公司拟购买一块地皮建休闲公园,如图,从公园入口沿,方向修建两条小路,休息亭与入口的距离为米(其中为正常数),过修建一条笔直的鹅卵石健身步行带,步行带交两条小路于、处,已知,.
(1)设米,米,求关于的函数关系式及定义域;
(2)试确定,的位置,使三条路围成的三角形地皮购价最低.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是正方体的平面展开图,在这个正方体中,有以下四个命题:①平面ADNE;②平面ABFE;③平面平面AFN;④平面平面NCF.其中正确命题的序号是( )
A.②③B.①②③C.②③④D.①②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的准线与轴交于点,过点作圆的两条切线,切点为,且.
(1)求抛物线的方程;
(2)若直线是过定点的一条直线,且与抛物线交于两点,过定点作的垂线与抛物线交于两点,求四边形面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(13分)设{an}是公比为正数的等比数列a1=2,a3=a2+4.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是一种加热食物的太阳灶,上面装有可旋转的抛物面形的反光镜,镜的轴截面是抛物线的一部分,盛食物的容器放在抛物线的焦点处,容器由若干根等长的铁筋焊接在一起的架子支撑.已知镜口圆的直径为8m,镜深1m.
(1)建立适当的坐标系,求抛物线的方程和焦点的位置;
(2)若把盛水和食物的容器近似地看作点,试求每根铁筋的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列的前n项和为,对于任意的,都有.
(1)求,;
(2)求数列的通项公式;
(3)令问是否存在正数m,使得对一切正整数n都成立?若存在,求出m的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.
(1)求出的值;
(2)求这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);
(3)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求这2组恰好抽到2人的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com