【题目】已知函数为偶函数.
(1)求实数的值;
(2)若不等式恒成立,求实数a的取值范围;
(3)若函数,,是否存在实数m,使得的最小值为2,若存在,请求出m的值;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】如图,在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在岛北偏东30°,俯角为30°的B处,到11时10分又测得该船在岛北偏西60°,俯角为60°的C处.
(1)求船的航行速度是每小时多少千米?
(2)又经过一段时间后,船到达海岛的正西方向的D处,问此时船距岛A有多远?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,且,
(1)求证:数列为等比数列,并求出数列的通项公式;
(2)是否存在实数,对任意,不等式恒成立?若存在,求出的取值范围,若不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设有三个乡镇,分别位于一个矩形的两个顶点M,N及的中点S处,,现要在该矩形的区域内(含边界),且与M,N等距离的一点O处设一个宣讲站,记O点到三个乡镇的距离之和为.
(1)设,试将L表示为x的函数并写出其定义域;
(2)试利用(1)的函数关系式确定宣讲站O的位置,使宣讲站O到三个乡镇的距离之和最小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个结论:
①命题“”的否定是“”;
②若是真命题,则可能是真命题;
③“且”是“”的充要条件;
④当时,幂函数在区间上单调递减.
其中正确的是
A. ①③ B. ②④ C. ①④ D. ②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知空间几何体ABCDE中,△BCD与△CDE均是边长为2的等边三角形,△ABC是腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.
(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出证明;
(2)求三棱锥E-ABC的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com