精英家教网 > 高中数学 > 题目详情

【题目】葫芦岛市某工厂党委为了研究手机对年轻职工工作和生活的影响情况做了一项调查:在厂内用简单随机抽样方法抽取了30名25岁至35岁的职工,对其“每十天累计看手机时间”(单位:小时)进行调查,得到茎叶图如下.所抽取的男职工“每十天累计看手机时间”的平均值和所抽取的女生 “每十天累计看手机时间”的中位数分别是( )

A. B. C. D.

【答案】A

【解析】阅读茎叶图可得

男职工看手机时间长度为:8,9,11,12,12,15,17,20,23,23,26,29,35,38,41,

女职工看手机时间长度为:7,9,10,13,14,16,24,25,26,27,28,34,36,38,40,

据此可得所抽取的男职工“每十天累计看手机时间”的平均值为:

,

所抽取的女生 “每十天累计看手机时间”的中位数分别是25.

本题选择A选项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点坐标分别是,并且经过.

(1)求椭圆的标准方程;

(2)过椭圆的右焦点作直线,直线与椭圆相交于两点,当的面积最大时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是边长为2的菱形,平面的中点.

(1)求证:平面平面

(2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“石头、剪刀、布”是个广为流传的游戏,游戏时甲乙双方每次做“石头”“剪刀”“布”三种手势中的一种,规定:“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势不分胜负须继续比赛,假设甲乙两人都是等可能地做这三种手势.

(1)列举一次比赛时两人做出手势的所有可能情况;

(2)求一次比赛甲取胜的概率,并说明“石头、剪刀、布”这个广为流传的游戏的公平性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国古代数学家刘徽用圆内接正多边形的面积去逼近圆的面积求圆周率,刘徽称这个方法为“割圆术”,并且把“割圆术”的特点概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,下图是根据刘徽的“割圆术”思想设计的一个程序框图,若运行该程序,则输出的的值为( )(参考数据:

A. 24 B. 30 C. 36 D. 48

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明准备利用暑假时间去旅游,妈妈为小明提供四个景点,九寨沟、泰山、长白山、武夷山.小明决定用所学的数学知识制定一个方案来决定去哪个景点:(如图)曲线和直线交于点.以为起点,再从曲线上任取两个点分别为终点得到两个向量,记这两个向量的数量积为.若去九寨沟;若去泰山;若去长白山; 去武夷山.

(1)若从这六个点中任取两个点分别为终点得到两个向量,分别求小明去九寨沟的概率和去泰山的概率;

(2)按上述方案,小明在曲线上取点作为向量的终点,则小明决定去武夷山.点在曲线上运动,若点的坐标为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ex﹣ax2,曲线y=f(x)在(1,f(1))处的切线方程为y=bx+1.

(1)求a,b的值;

(2)求f(x)在[0,1]上的最大值;

(3)证明:当x>0时,ex+(1﹣e)x﹣xlnx﹣1≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处都取得极值.

(1)求的值;(2)若对时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数,且函数图象的两相邻对称轴间的距离为.

(1)求的值;

(2)函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数的图象,求的单调递减区间.

查看答案和解析>>

同步练习册答案