精英家教网 > 高中数学 > 题目详情

【题目】《中国诗词大会》(二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词,在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有( )

A. B. C. D.

【答案】A

【解析】《将进酒》、《望岳》和另确定的两首诗词排列全排列共有种排法,满足《将进酒》排在《望岳》的前面的排法共有,再将《山居秋暝》与《送杜少府之任蜀州》插排在个空里(最后一个空不排),有种排法,《将进酒》排在《望岳》的前面、《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有种,故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面平面 的中点.

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点P(x,y)满足方程xy=1(x>0).
(Ⅰ)求动点P到直线l:x+2y﹣ =0距离的最小值;
(Ⅱ)设定点A(a,a),若点P,A之间的最短距离为2 ,求满足条件的实数a的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,DE∥BC,BC=2DE,CA⊥CB,CA⊥CD,CB⊥CD,F、G分别是AC、BC中点.
(1)求证:平面DFG∥平面ABE;
(2)若AC=2BC=2CD=4,求二面角E﹣AB﹣C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在“一带一路”的建设中,中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了几口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料下表:

井号I

1

2

3

4

5

6

坐标

钻探深度

2

4

5

6

8

10

出油量

40

70

110

90

160

205

(1)在散点图中号旧井位置大致分布在一条直线附近,借助前5组数据求得回归线方程为,求,并估计的预报值;

(2)现准备勘探新井,若通过1、3、5、7号井计算出的的值(精确到0.01)相比于(1)中的值之差(即: )不超过10%,则使用位置最接近的已有旧井,否则在新位置打井,请判断可否使用旧井?(参考公式和计算结果:

(3)设出油量与钻探深度的比值不低于20的勘探井称为优质井,在原有井号的井中任意勘探3口井,求恰好2口是优质井的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面四边形ABCD中,AD=1,CD=2,AC=
(Ⅰ)求cos∠CAD的值;
(Ⅱ)若cos∠BAD=﹣ ,sin∠CBA= ,求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,椭圆过点,直线轴于,且为坐标原点.

1)求椭圆的方程;

2)设是椭圆的上顶点,过点分别作直线交椭圆两点,设这两条直线的斜率分别为,且,证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个单位有职工800人,期中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是(
A.12,24,15,9
B.9,12,12,7
C.8,15,12,5
D.8,16,10,6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}是等差数列,若 <﹣1,且它的前n项和Sn有最大值,那么当Sn取的最小正值时,n=(
A.11
B.17
C.19
D.21

查看答案和解析>>

同步练习册答案