精英家教网 > 高中数学 > 题目详情

已知三棱柱的侧棱长和底面边长均为2,在底面ABC内的射影O为底面△ABC的中心,如图所示:

(1)联结,求异面直线所成角的大小;
(2)联结,求三棱锥C1-BCA1的体积.

(1);(2)

解析试题分析:(1)要求异面直线所成的角,必须按照定义作出这个角,即把异面直线平移为相交直线,求相交直线所夹的锐角或直角,当然我们一般是过异面直线中的某一条上一点作另一条直线的平行线,同时要借助已知图形中的平行关系寻找平行线,以方便解题.本题是三棱柱,显然有,因此只要在中求即可;(2)求三棱锥的体积,一般用公式,即底面面积乘以高再除以3,但本题中由于三棱锥的高不容易找,而这个三棱锥在三棱柱中,因此我们可借助三棱柱来求棱锥的体积,利用棱锥体积的公式,可知这个三棱柱被分成三个体积相等的三棱锥,因此我们只要求三棱柱的体积即可.
试题解析:(1) 联结,并延长与交于点,则边上的中线.
是正的中心,且平面
.∴


∴异面直线所成的角为
即四边形为正方形.
∴异面直线所成角的大小为
(2)∵三棱柱的所有棱长都为2,
 ∴可求算得


考点:(1)异面直线所成的角;(2)三棱锥的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在长方体中,,点是棱上的一个动点.

(1)证明:
(2)当的中点时,求点到面的距离;
(3)线段的长为何值时,二面角的大小为.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是边长为的正方形, ,且点满足 .

(1)证明:平面 .
(2)在线段上是否存在点,使得平面?若存在,确定点的位置,若不存在请说明理由 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,点分别是棱的中点.

(1)求证://平面
(2)若平面平面,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,矩形中,,,分别为边上的点,且,,将沿折起至位置(如图2所示),连结,其中.

(Ⅰ)求证:平面
(Ⅱ)在线段上是否存在点使得平面?若存在,求出点的位置;若不存在,请说明理由.
(Ⅲ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知为不在同一直线上的三点,且.

(1)求证:平面//平面
(2)若平面,且,求证:平面
(3)在(2)的条件下,设点上的动点,求当取得最小值时的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥P-ABCD中,PA⊥平面ABCD,AD⊥AB,△ABC是正三角形,AC与BD的交点M恰好是AC中点,N为线段PB的中点,G在线段BM上,且

(Ⅰ)求证:AB⊥PD;
(Ⅱ)求证:GN//平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知AB为圆O的直径,点D为线段AB上一点,且,点C为圆O上一点,且.点P在圆O所在平面上的正投影为点D,PD=DB.

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为直角梯形,垂直于底面分别为的中点.

(1)求证:
(2)求点到平面的距离.

查看答案和解析>>

同步练习册答案