精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中, ,侧面为等边三角形, .

(Ⅰ)证明: 平面

(Ⅱ)求与平面所成的角的大小.

【答案】(1)见解析(2)

【解析】试题分析:(Ⅰ)由问题,可根据线面垂直判定定理的条件要求,从题目条件去寻相关的信息,先证线线垂直,即,从而问题可得解;(Ⅱ)要求直线与平面所成角,一般步骤是先根据图形特点作出所求的线面角,接着将该所在三角形的其他要素(包括角、边或是三角形的形状等)算出来,再三角形的性质或是正弦定理、余弦定理来进行运算,从问题得于解决(类似问题也可以考虑采用坐标法来解决).

试题解析:(Ⅰ)取的中点E,连接

则四边形为矩形,

所以

所以

因为侧面为等边三角形,

所以,且

又因为

所以

所以.

所以平面.

(Ⅱ)

过点于点

因为

所以平面.

平面

由平面与平面垂直的性质,

平面

中,由

所以.

过点平面,连接

即为与平面所成的角,

因为平面

所以平面

平面

所以.

中,由

求得.

中,

所以

解得

所以

与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知坐标平面上点与两个定点 的距离之比等于.

(1)求点的轨迹方程,并说明轨迹是什么图形;

(2)记(1)中的轨迹为,过点的直线所截得的线段的长为,求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】时,解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班同学利用国庆节进行社会实践,对岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为低硕族,否则称为非低碳族,得到如下统计表和各年龄段人数频率分布直方图:

组数

分组

低碳族的人数

占本组的频率

第一组

120

0.6

第二组

195

第三组

100

0.5

第四组

0.4

第五组

30

0.3

第六组

15

0.3

(1)补全频率分布直方图并求的值(直接写结果);

(2)从年龄段在低碳族中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中至少有1人年龄在岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位有200名职工,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1200编号,并按编号顺序平均分为40组(15号,610196200号).若第5组抽出的号码为22,则第8组抽出的号码应是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体中,分别是的中点,,过三点的的平面截去长方体的一个角后.得到如图所示的几何体,且这个几何体的体积为

(1)求证:平面

(2)求的长;

(3)在线段上是否存在点,使直线垂直,如果存在,求线段的长,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点坐标分别是,并且经过点.

(1)求椭圆的方程;

(2)若直线与圆相切,并与椭圆交于不同的两点.,且满足时,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设计一份学生食堂饭菜质量、饭菜价格、服务质量满意程度的调查问卷.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一批产品需要原材料500吨,每吨原材料可创造利润12万元,该公司通过设备升级,生产这批产品所需原材料减少了吨,且每吨原材料创造的利润提高了;若将少用的吨原材料全部用于生产公司新开发的产品,每吨原材料创造的利润为万元,其中

(1)若设备升级后生产这批产品的利润不低于原来生产该批产品的利润,求的取值范围;

(2)若生产这批产品的利润始终不高于设备升级后生产这批产品的利润,求的最大值.

查看答案和解析>>

同步练习册答案