精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)讨论的单调性;

2)设,若函数的两个极值点恰为函数的两个零点,且的范围是,求实数a的取值范围.

【答案】1)当时,单调递减区间为,无单调递增区间;当时,单调递减区间为;单调递增区间为;(2

【解析】

1)求解导函数,根据导函数的分子(二次函数)分类讨论的关系,从而可分析出函数的单调性;

2)根据已知条件构造关于的新函数,根据新函数的单调性分析出的取值范围,然后根据的关系即可求解出的取值范围.

解:(1的定义域为.

i)若,则,当且仅当时,

ii)若,令.

时,

时,

所以,当时,单调递减区间为,无单调递增区间;

时,单调递减区间为

单调递增区间为.

2)由(1)知:.

,∴

.

,∴

,所以上单调递减.

y的取值范围是,得t的取值范围是

,∴

又∵,故实数a的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C上的点到点的距离与它到直线的距离之比为,圆O的方程为,曲线Cx轴的正半轴的交点为A,过原点O且异于坐标轴的直线与曲线C交于BC两点,直线AB与圆O的另一交点为P,直线PD与圆O的另一交点为Q,其中,设直线ABAC的斜率分别为

1)求曲线C的方程,并证明到点M的距离

2)求的值;

3)记直线PQBC的斜率分别为,是否存在常数,使得?若存在,求的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某产品的历史收益率的频率分布直方图如图所示.

(1)试估计该产品收益率的中位数;

(2)若该产品的售价(元)与销量(万份)之间有较强线性相关关系,从历史销售记录中抽样得到如表5组的对应数据:

售价(元)

25

30

38

45

52

销量(万份)

7.5

7.1

6.0

5.6

4.8

根据表中数据算出关于的线性回归方程为,求的值;

(3)若从表中五组销量数据中随机抽取两组,记其中销量超过6万份的组数为,求的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上为增函数,求的取值范围;

(2)若函数有两个不同的极值点,记作,且,证明:为自然对数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动直线轴交于点,过点作直线,交轴于点,点满足的轨迹为.

1)求的方程;

2)已知点,点,过作斜率为的直线交两点,延长分别交两点,记直线的斜率为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的最小正周期;

(2)将函数的图象向右平移个单位长度,再向下平移)个单位长度后得到函数的图象,且函数的最大值为2.

(ⅰ)求函数的解析式; (ⅱ)证明:存在无穷多个互不相同的正整数,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到定直线的距离比到定点的距离大2.

(1)求动点的轨迹的方程;

(2)在轴正半轴上,是否存在某个确定的点,过该点的动直线与曲线交于两点,使得为定值.如果存在,求出点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy下,曲线C1的参数方程为 为参数),曲线C1在变换T的作用下变成曲线C2

1)求曲线C2的普通方程;

2)若m>1,求曲线C2与曲线C3y=m|x|-m的公共点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的离心率为,左、右顶点分别为AB,点M是椭圆C上异于AB的一点,直线AMy轴交于点P

(Ⅰ)若点P在椭圆C的内部,求直线AM的斜率的取值范围;

(Ⅱ)设椭圆C的右焦点为F,点Qy轴上,且∠PFQ=90°,求证:AQBM

查看答案和解析>>

同步练习册答案