精英家教网 > 高中数学 > 题目详情

一只袋内装有m个白球,n-m个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了ξ个白球,下列概率等于的是(  )

(A)P(ξ=3) (B)P(ξ≥2)

(C)P(ξ≤3) (D)P(ξ=2)

 

D

【解析】ξ=2,即前2个拿出的是白球,3个是黑球,于是前2个拿出白球,,再任意拿出1个黑球即可,,而在这3次拿球中可以认为按顺序排列,此排列顺序即可认为是依次拿出的球的顺序,.

P(ξ=2)==.

 

练习册系列答案
相关习题

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业七十八选修4-4第二节练习卷(解析版) 题型:解答题

以直角坐标系的原点为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线l的极坐标方程为ρsin(θ-)=6,C的参数方程为(θ为参数),求直线l被圆C截得的弦长.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业七十三第十章第十节练习卷(解析版) 题型:解答题

某班同学利用国庆节进行社会实践,[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:

组 数

分 组

低碳族的人数

占本组的频率

第一组

[25,30)

120

0.6

第二组

[30,35)

195

p

第三组

[35,40)

100

0.5

第四组

[40,45)

a

0.4

第五组

[45,50)

30

0.3

第六组

[50,55]

15

0.3

 

(1)补全频率分布直方图并求n,a,p的值.

(2)为调查该地区的年龄与生活习惯和是否符合低碳观念有无关系,调查组按40岁以下为青年,40岁以上(40)为老年分成两组,请你先完成下面2×2列联表,并回答是否有99%的把握认为该地区的生活习惯是否符合低碳观念与人的年龄有关.

参考公式:χ2=

P(χ2x0)

0.050

0.010

0.001

x0

3.841

6.635

10.828

 

年龄组

 

是否低碳族

青 年

老 年

总 计

低碳族

 

 

 

非低碳族

 

 

 

总计

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业七十七选修4-4第一节练习卷(解析版) 题型:解答题

已知曲线C:ρsin(θ+)=,曲线P:ρ2-4ρcosθ+3=0,

(1)求曲线C,P的直角坐标方程.

(2)设曲线C和曲线P的交点为A,B,|AB|.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业七十一第十章第八节练习卷(解析版) 题型:解答题

某市职教中心组织厨师技能大赛,大赛依次设基本功(初赛)、面点制作(复赛)、热菜烹制(决赛)三个轮次的比赛,已知某选手通过初赛、复赛、决赛的概率分别是,,且各轮次通过与否相互独立.

(1)设该选手参赛的轮次为ξ,求ξ的分布列.

(2)对于(1)中的ξ,设“函数f(x)=3sinπ(xR)是偶函数”为事件D,求事件D发生的概率.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业七十一第十章第八节练习卷(解析版) 题型:选择题

设随机变量ξ的概率分布为P(ξ=i)=a()i,i=1,2,3,a的值是(  )

(A)   (B)   (C)   (D)

 

查看答案和解析>>

科目:高中数学 来源:2014年高中数学全国各省市理科导数精选22道大题练习卷(解析版) 题型:解答题

已知向量为常数, 是自然对数的底数),曲线在点处的切线与垂直,

(Ⅰ)的值的单调区间

已知函数 (为正实数),若对于任意,总存在使得,求实数的取值范围

 

查看答案和解析>>

科目:高中数学 来源:2014年陕西省咸阳市高考模拟考试(一)理科数学试卷(解析版) 题型:解答题

如图,四边形PCBM是直角梯形,PCB=90°PMBCPM=1BC=2.又AC=1ACB=120°ABPC,直线AM与直线PC所成的角为60°

1)求证:PCAC

2)求二面角M﹣AC﹣B的余弦值;

3)求点B到平面MAC的距离.

 

查看答案和解析>>

科目:高中数学 来源:2014年广东省广州市毕业班综合测试一文科数学试卷(解析版) 题型:解答题

已知函数.

1)求函数的极值;

2)定义:若函数在区间上的取值范围为,则称区间为函数的“域同区间”.试问函数上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案