精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
如图,四棱锥中,底面,四边形中, ,, ,,E为中点.
(1)求证:CD⊥面PAC;(2)求:异面直线BE与AC所成角的余弦值;

(1)见解析 (2) 90°

解析试题分析:(1)(6分)   
∵PA⊥面ABCD,CD面ABCD      ∴PA⊥CD       2分
,,且 AB=BC=2
∴∠ABC=90°,AC=2,∠CAD=45°
∵AD=4         ∴CD=2
∵CD2+AC2=AD2          ∴AC⊥CD                4分
∵AC∩PA=A             ∴CD⊥面PAC         6分
(2)(6分)解:
方法一:以A为原点,分别以AB、AD、AP所在直线为x轴、y轴、z轴建立空间直角坐标系
则A(0,0,0),B(2,0,0),C(2,2,0),P(0,0,2)          2分
∵E是PC中点
∴E(1,1,1)           
                  4分

∴BE⊥AC       ∴BE与AC所成的角为90°    6分
方法二:作AC中点O,连结EO
∵E、O分别是PC、AC中点
∴EO//PA
∵PA⊥面ABCD       ∴EO⊥面ABCD
∴EO⊥AC
可证得ABCG是正方形    ∴AC⊥BO
∵BO∩EO=O         ∴AC⊥面BEO
∴AC⊥BE       ∴BE与AC所成的角为90°
方法三:作PD中点F,AD中点G
∵AD2BC,AG=GD   
∴四边形ABCG是正方形,且BG//CD  ∴BO
∵EF是△PCD的中位线   ∴EF
∴EFBO       ∴BEFO
∴BE与AC所成的角等于OF与AC所成的角
PB=2,BC=2,PC=        ∴PB⊥BC
∵E是PC中点       ∴BE=
PD=    ∴AF=
∵AO=,OF=BE=,AF=  ∴∠AOF=90° 即BE与AC所成的角为90°
考点:考查线面垂直的判定和异面直线所成角的求解
点评:立体几何的求解有两大思路。其一:几何法,依据线面的位置关系,长度关系推理计算:其二,代数法,利用空间坐标系,点的坐标转化为向量运算

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(14分)如右图,简单组合体ABCDPE,其底面ABCD为边长为的正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC=.

(1)若N为线段PB的中点,求证:EN//平面ABCD;
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)已知:四边形ABCD是空间四边形,E, H分别是边AB,AD的中点,F, G分别是边CB,CD上的点,且
求证:(1)四边形EFGH是梯形;
(2)FE和GH的交点在直线AC上 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
如图,棱锥P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.

(1)求证:BD⊥平面PAC;
(2)求二面角P—CD—B余弦值的大小
(3)求点C到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

本小题满分14分)
如图,在直三棱柱中,,点分别是的中点.
(Ⅰ)求证:平面
(Ⅱ)证明:平面平面
(Ⅲ)求多面体A1B1C1BD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,直三棱柱ABC?A1B1C1中, AC= BC=AA1,D是棱AA1的中点,DC1⊥BD.
(Ⅰ)证明:DC1⊥BC;
(Ⅱ)求二面角A1?BD?C1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)如图,三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点,平面ABC

(Ⅰ)求证:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的余弦值;
(Ⅲ)求点C到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(ii)当满足条件           ___________时,有.(填所选条件的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,在中,上的高,沿折起,使 。
(Ⅰ)证明:平面ADB  ⊥平面BDC;
(Ⅱ)设E为BC的中点,求AE与DB夹角的余弦值。

查看答案和解析>>

同步练习册答案