精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)当时,

①若曲线与直线相切,求的值;

②若曲线与直线有公共点,求的取值范围.

(2)当时,不等式对于任意正实数恒成立,当取得最大值时,求的值.

【答案】(1)①1 ,②(2)1,-1.

【解析】

时,,所以

设切点为,列出方程组,即可求得,得到答案

由题意,得方程有正实数根,即方程有正实数根,记,利用导数求得函数的单调性和最小值,即可求解的取值范围

由题意得,当时,对于任意正实数恒成立,所以当时,对于任意正实数恒成立,由知,进而得到

,……,得到当,进而得到对于任意正实数恒成立,再利用二次函数的性质,即可得到结论

(1)解:当时,,所以

①设切点为,则

由②③得,

由①得代入④得,

所以

②由题意,得方程有正实数根,

即方程有正实数根,

,令

时,;当时,

所以上为减函数,在上为增函数;

所以

,则,不合;

,由①知适合;

,则,又

所以,由零点存在性定理知上必有零点.

综上,c的取值范围为

(2)由题意得,当时,对于任意正实数x恒成立,

所以当时,对于任意正实数x恒成立,

由(1)知,

两边同时乘以x得,

两边同时加上得,②,

所以(*),当且仅当时取等号.

对(*)式重复以上步骤①②可得,

进而可得,,……,

所以当时,,当且仅当时取等号.

所以

取最大值1时,对于任意正实数x恒成立,

令上式中得, ,所以

所以对于任意正实数x恒成立,

对于任意正实数x恒成立,

所以,所以函数的对称轴

所以,即,所以

又由,两边同乘以x2得,

所以当时,也恒成立,

综上,得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形中,分别在上,,现将四边形沿折起,使平面平面.

(Ⅰ)若,在折叠后的线段上是否存在一点,且,使得平面?若存在,求出的值;若不存在,说明理由;

(Ⅱ)当三棱锥的体积最大时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现对一块长米,宽米的矩形场地ABCD进行改造,点E为线段BC的中点,点F在线段CDAD上(异于AC),设(单位:米),的面积记为(单位:平方米),其余部分面积记为(单位:平方米).

1)求函数的解析式;

2)设该场地中部分的改造费用为(单位:万元),其余部分的改造费用为(单位:万元),记总的改造费用为W单位:万元),求W最小值,并求取最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°AC=AB=AA1EBC的中点.

1)求证:AEB1C

2)求异面直线AEA1C所成的角的大小;

3)若GC1C中点,求二面角C-AG-E的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是边长为4的正方形,侧面为正三角形且二面角

(Ⅰ)设侧面的交线为,求证:

(Ⅱ)设底边与侧面所成角的为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司一年需购买某种原料400吨,设公司每次都购买吨,每次运费为4万元,一年的总存储费用为万元.

1)要使一年的总运费与总存储费用之和最小,则每次购买多少吨?

2)要使一年的总运费与总存储费用之和不超过200万元,则每次购买量在什么范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017高考特别强调了要增加对数学文化的考查,为此某校高三年级特命制了一套与数学文化有关的专题训练卷(文、理科试卷满分均为100分),并对整个高三年级的学生进行了测试.现从这些学生中随机抽取了50名学生的成绩,按照成绩为 ,…, 分成了5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分).

(1)求频率分布直方图中的的值,并估计所抽取的50名学生成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表);

(2)若高三年级共有2000名学生,试估计高三学生中这次测试成绩不低于70分的人数;

(3)若在样本中,利用分层抽样的方法从成绩不低于70分的三组学生中抽取6人,再从这6人中随机抽取3人参加这次考试的考后分析会,试求两组中至少有1人被抽到的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若动点在直线上,动点Q在直线上,记线段的中点为

,且,则的取值范围为 ________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】按照国家质量标准:某种工业产品的质量指标值落在[100,120)内,则为合格品,否则为不合格品.某企业有甲乙两套设备生产这种产品,为了检测这两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本对规定的质量指标值进行检测.表1是甲套设备的样本频数分布表,图1是乙套设备的样本频率分布直方图.

质量指标值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

频数

1

4

19

20

5

1

表1:甲套设备的样本频数分布表

(1)将频率视为概率,若乙套设备生产了5000件产品,则其中合格品约有多少件?

(2)填写下面2×2列联表,并根据列联表判断是否有95%的把握认为这种产品的质量指标值与甲乙两套设备的选择有关:

甲套设备

乙套设备

合计

合格品

不合格品

合计

(3)根据表和图,对甲、乙两套设备的优劣进行比较.参考公式及数据:x2=

P(Х2≥k)

0.100

0.050

0.010

k

2.706

3.841

6.635

查看答案和解析>>

同步练习册答案