精英家教网 > 高中数学 > 题目详情

如图,在棱长为1的正方体中.

⑴求异面直线所成的角;
⑵求证:平面平面

(Ⅰ). (Ⅱ)利用线面垂直证明面面垂直 

解析试题分析:(Ⅰ)如图,,则就是异面直线所成的角.
连接,在中,,则
因此异面直线所成的角为

(Ⅱ) 由正方体的性质可知 , 故
正方形中,
,∴ ;     
,∴平面. 
考点:本题考查了空间中的线面关系
点评:以正方体为载体考查立体几何中的线面、面面、点面位置关系或体积是高考的亮点,掌握其判定性质及定理,是解决此类问题的关键

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是正方形,,点在棱上.

(Ⅰ)  求证:平面平面
(Ⅱ)  当,且时,确定点的位置,即求出的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在矩形ABCD中,AB=4,AD=2,EAB的中点,现将△ ADE沿直线DE翻折成△ADE,使平面ADE⊥平面BCDEF为线段AD的中点.

(1)求证:EF//平面ABC
(2)求直线AB与平面ADE所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(文科)(本小题满分12分)长方体中,是底面对角线的交点.

(Ⅰ) 求证:平面
(Ⅱ) 求证:平面
(Ⅲ) 求三棱锥的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,且PA=1.

(1)试建立适当的坐标系,并写出点P、B、D的坐标;
(2)问当实数a在什么范围时,BC边上能存在点Q,使得PQ⊥QD?
(3)当BC边上有且仅有一个点Q使得PQ⊥QD时,求二面角Q-PD-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方体棱长为1,的中点,的中点.

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图梯形ABCD,AD∥BC,∠A=900,过点C作CE∥AB,AD=2BC,AB=BC,,现将梯形沿CE
折成直二面角D-EC-AB.
(1)求直线BD与平面ABCE所成角的正切值;
(2)设线段AB的中点为,在直线DE上是否存在一点,使得∥面BCD?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由;
   

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱的所有棱长都为2,中点,平面

(1)求证:平面
(2)求二面角的余弦值;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面是边长为2的正方形,,且中点.

(Ⅰ)求证:平面;    
(Ⅱ)求二面角的大小;
(Ⅲ)在线段上是否存在点,使得点到平
的距离为?若存在,确定点的位置;
若不存在,请说明理由.

查看答案和解析>>

同步练习册答案