精英家教网 > 高中数学 > 题目详情
17.下列说法中正确的个数有(  )
①两平面平行,夹在两平面间的平行线段相等;
②两平面平行,夹在两平面间的相等的线段平行;
③两条直线被三个平行平面所截,截得的线段对应成比例;
④如果夹在两平面间的三条平行线段相等,那么这两个平面平行.
A.1个B.2个C.3个D.4个

分析 ①根据面面平行的性质判断.②线段相等,不一定平行.③利用平面与平面平行的性质,可得正确;④分类讨论,可得结论.

解答 解:解:①根据面面平行的性质,可知夹在两平面间的平行线段相等,正确.
②夹在两平面问的相等的线段不一定是平行的,所以错误.
③两条直线被三个平行平面所截,截得的线段对应成比例,利用平面与平面平行的性质,可得正确;
④如果两个平面平行,则夹在两个平面间的三条平行线段一定相等,如果两个平面相交,则夹在两个平面间的三条平行线段可能相等,故这两个平面平行或相交,不正确.
故选:B.

点评 本题主要考查空间直线和平面平行和面面平行的性质,根据相应的平行定理是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长为8,且离心率为$\frac{{\sqrt{2}}}{2}$.
(1)求椭圆C的方程;
(2)过椭圆C的左焦点F1的直线l交椭圆于M、N两点,且该椭圆上存在点P,使得四边形MONP(图形上的字母按此顺序排列)恰好为平行四边形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.椭圆4x2+y2=16的长轴长等于8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数y=x+$\frac{t}{x}$有如下性质:如果常数t>0,那么该函数在$(0,\sqrt{t}]$上是减函数,在$[\sqrt{t},+∞)$上是增函数.
(1)已知f(x)=$\frac{{{x^2}-2x-4}}{x+2}$,x∈[-1,1],利用上述性质,求函数f(x)的单调区间和值域;
(2)对于(1)中的函数f(x)和函数g(x)=-x-2a,若对任意x1∈[-1,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.下面有四个命题:①函数y=sin4x-cos4x的最小正周期是π.②函数f(x)=3sin(2x-$\frac{π}{3}$)的图象关于直线x=$\frac{11}{12}$π对称;③在同一坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点.④把函数y=3sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{6}$得到y=3sin2x的图象.其中真命题的序号是①②④.(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知正方体ABCD-A1B1C1D1,过A1点可作    条直线与直线AC和BC1都成60°角(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在各棱长均相等的三棱柱ABC-A1B1C1中,∠A1AC=60°,D为AC的中点.
(1)求证:B1C∥平面A1BD;
(2)求证:平面ABB1A1⊥平面AB1C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$f(x)={x^{\frac{1}{3}}}-{({\frac{1}{2}})^x}$,其零点所在区域为(  )
A.$({0,\frac{1}{3}})$B.$({\frac{1}{3},\frac{1}{2}})$C.$({\frac{1}{2},1})$D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设全集U=R,集合M={x|-2≤x≤2},N=$\left\{{\left.x\right|y=\sqrt{1-x}}\right\}$,那么M∪N={x|x≤2},N∩(∁UM)={x|x<-2}.

查看答案和解析>>

同步练习册答案