分析 (1)推导出AC⊥BD,AC⊥DD1,由此能证明AC⊥平面BB1D1D.
(2)四棱锥D1-ABCD的体积V=$\frac{1}{3}{S}_{正方形ABCD}×D{D}_{1}$,由此能求出结果.
解答 证明:(1)∵在四棱柱ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是正方形,
∴AC⊥BD,AC⊥DD1,
∵BD∩DD1=D,
∴AC⊥平面BB1D1D.
解:(2)∵D1D⊥平面ABCD,底面ABCD是正方形,
且AB=1,D1D=$\sqrt{2}$,
∴四棱锥D1-ABCD的体积V=$\frac{1}{3}{S}_{正方形ABCD}×D{D}_{1}$=$\frac{1}{3}×{1}^{2}×\sqrt{2}$=$\frac{\sqrt{2}}{3}$.
点评 本题考查线面垂直的证明,考查四棱锥体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
A. | (-∞,1]∪(2,+∞) | B. | (1,2) | C. | [1,2) | D. | (-∞,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{2π}{3}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0.952 | B. | 0.942 | C. | 0.954 | D. | 0.960 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{3}$ | B. | $3\sqrt{3}$ | C. | $\frac{9}{2}$ | D. | $\frac{9}{2}\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com