精英家教网 > 高中数学 > 题目详情

【题目】过抛物线的焦点且斜率为1的直线与抛物线交于两点,且.

1)求抛物线的方程;

2)点是抛物线上异于的任意一点,直线与抛物线的准线分别交于点,求证:为定值.

【答案】1;(2)证明见解析

【解析】

1)根据题意,设直线,与抛物线方程联立,再利用抛物线定义,由求解.

2)设,得到直线,令,得到,再根据点均在抛物线 ,将,代入化简得到,同理可得点的纵坐标为,然后由数量积坐标运算求解.

1)由题意知,则直线

代入抛物线,化简得

,则

因抛物线的准线方程为

由抛物线的定义得

故抛物线的方程为.

2)设,则直线

时,

∵点均在抛物线

即点的纵坐标为

同理可得点的纵坐标为

由(1)知

,为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司培训员工某项技能,培训有如下两种方式,方式一:周一到周五每天培训1小时,周日测试;方式二:周六一天培训4小时,周日测试.公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训,甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如下表,其中第一、二周达标的员工评为优秀.

第一周

第二周

第三周

第四周

甲组

20

25

10

5

乙组

8

16

20

16

(1)在甲组内任选两人,求恰有一人优秀的概率;

(2)每个员工技能测试是否达标相互独立,以频率作为概率.

(i)设公司员工在方式一、二下的受训时间分别为,求的分布列,若选平均受训时间少的,则公司应选哪种培训方式?

(ii)按(i)中所选方式从公司任选两人,求恰有一人优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:

甲说:作品获得一等奖”; 乙说:作品获得一等奖”;

丙说:两件作品未获得一等奖”; 丁说:作品获得一等奖”.

评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是2018年第一季度五省GDP情况图,则下列描述中不正确的是( )

A. 与去年同期相比2018年第一季度五个省的GDP总量均实现了增长

B. 2018年第一季度GDP增速由高到低排位第5的是浙江省

C. 2018年第一季度GDP总量和增速由高到低排位均居同一位的省只有1

D. 去年同期河南省的GDP总量不超过4000亿元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数上的最大值;

(Ⅱ)讨论函数的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市民用水拟实行阶梯水价,每人用水量中不超过立方米的部分按4/立方米收费,超出立方米的部分按10/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:

1)如果为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4/立方米, 至少定为多少?

2)假设同组中的每个数据用该组区间的右端点值代替,当时,估计该市居民该月的人均水费.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年11月21日,意大利奢侈品牌“”在广告中涉嫌辱华,中国明星纷纷站出来抵制该品牌,随后京东、天猫、唯品会等中国电商平台全线下架了该品牌商品,当天有大量网友关注此事件,某网上论坛从关注此事件跟帖中,随机抽取了100名网友进行调查统计,先分别统计他们在跟帖中的留言条数,再把网友人数按留言条数分成6组:得到如图所示的频率分布直方图;

并将其中留言不低于40条的规定为“强烈关注”,否则为“一般关注”,对这100名网友进一步统计得到列联表的部分数据如下表.

一般关注

强烈关注

合计

45

10

55

合计

100

(1)在答题卡上补全列联表中数据;并判断能否有95%的把握认为网友对此事件是否为“强烈关注”与性别有关?

(2)现已从“强烈关注”的网友中按性别分层抽样选取了5人,再从这5人中选取2人,求这2人中至少有1名女性的概率.

参考公式及数据:

0.05

0.010

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正五边形的对角线分别与对角线交于点,对角线分别与对角线交于点,对角线与对角线交于点. 设由图2中的10个点和线段构成的等腰三角形的集合为.

(1)求中元素的数目;

(2)若将这10个点中的每个点任意染为红、蓝两种颜色之一,问是否一定存在中的一个等腰三角形,其三个顶点同色?

(3)若将这10个点中的任意个点染为红色,使得一定存在中的一个等腰三角形,其三个顶点同为红色,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知aR,函数f(x)=(-x2ax)ex(xR).

(1)a=2时,求函数f(x)的单调区间;

(2)若函数f(x)(-1,1)上单调递增,求a的取值范围.

查看答案和解析>>

同步练习册答案