精英家教网 > 高中数学 > 题目详情
设函数f1(x)=x
1
2
,f2(x)=x-1,f3(x)=x2,则f3{f2[f1(2011)]}=(  )
分析:先求出f3{f2[f1(x)]}的表达式,然后代入2011即可得到答案.
解答:解:f1(x)=x
1
2
,则f2[f1(x)]=(x
1
2
)-1=x-
1
2

f3{f2[f1(x)]}=(x-
1
2
)2
=x-1
所以f3{f2[f1(2011)]}=2011-1=
1
2011

故选B.
点评:本题考查函数的求值,考查学生的运算能力,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于定义在D上的函数y=f(x),若同时满足.
①存在闭区间[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常数);
②对于D内任意x2,当x2∉[a,b]时总有f(x2)>c称f(x)为“平底型”函数.
(1)(理)判断f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函数?简要说明理由;
(文)判断f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函数?简要说明理由;
(2)(理)设f(x)是(1)中的“平底型”函数,若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,对一切t∈R恒成立,求实数x的范围;
(文)设f(x)是(1)中的“平底型”函数,若|t-1|+|t+1|≥f(x),对一切t∈R恒成立,求实数x的范围;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函数,求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函数,求m和n满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网(理)设6张卡片上分别写有函数f1(x)=x、f2(x)=x2、f3(x)=x3、f4(x)=sinx、f5(x)=cosx和f6(x)=lg(|x|+1).
(Ⅰ)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数
的概率;
(Ⅱ)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片,则停止抽取,否则继续进行,求抽取次数ξ的分布列和数学期望.
(文)已知四棱锥P-ABCD的三视图如下图所示,E是侧棱PC上的动点.
(Ⅰ) 求四棱锥P-ABCD的体积;
(Ⅱ) 是否不论点E在何位置,都有BD⊥AE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设g(x)=2x+
1
x
,x∈[
1
4
,4].
(1)求g(x)的单调区间;(简单说明理由,不必严格证明)
(2)证明g(x)的最小值为g(
2
2
);
(3)设已知函数f(x)(x∈[a,b]),定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b].其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.例如:f(x)=sinx,x∈[-
π
2
π
2
],则f1(x)=-1,x∈[-
π
2
π
2
],f2(x)=sinx,x∈[-
π
2
π
2
],设φ(x)=
g(x)+g(2x)
2
+
|g(x)-g(2x)|
2
,不等式p≤φ1(x)-φ2(x)≤m恒成立,求p、m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f1(x)=|x-1|,f2(x)=-x2+6x-5,函数g(x)是这样定义的:当f1(x)≥f2(x)时,g(x)=f1(x),当f1(x)<f2(x)时,g(x)=f2(x),若方程g(x)=a有四个不同的实数解,则实数a的取值范围是
(3,4)
(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•浦东新区一模)对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(1)下面给出两组函数,h(x)是否分别为f1(x),f2(x)的生成函数?并说明理由.
第一组:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+
π
3
)

第二组:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)设f1(x)=log2x,f2(x)=log
1
2
x,a=2,b=1
,生成函数h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求实数t的取值范围.
(3)设f1(x)=x(x>0),f2(x)=
1
x
(x>0)
,取a>0,b>0生成函数h(x)图象的最低点坐标为(2,8).若对于任意正实数x1,x2且x1+x2=1,试问是否存在最大的常数m,使h(x1)h(x2)≥m恒成立?如果存在,求出这个m的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案