精英家教网 > 高中数学 > 题目详情
19.某几何体的三视图如图所示,则该几何体的体积是$\frac{π}{3}$+$\frac{4}{3}$.

分析 由三视图可得,直观图是半个圆锥与三棱锥的组合体,由图中数据,可得几何体的体积.

解答 解:由三视图可得,直观图是半个圆锥与三棱锥的组合体,
由图中数据,可得V=$\frac{1}{2}×\frac{1}{3}π×{1}^{2}×\sqrt{5-1}$+$\frac{1}{3}×\frac{1}{2}×2×2×\sqrt{5-1}$=$\frac{π}{3}$+$\frac{4}{3}$,
故答案为$\frac{π}{3}$+$\frac{4}{3}$.

点评 本题考查由三视图求几何体的体积,考查数形结合的数学思想,正确得出直观图是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$是共面的三个向量,其中$\overrightarrow{a}$=($\sqrt{2}$,2),|$\overrightarrow{b}$|=2$\sqrt{3}$,|$\overrightarrow{c}$|=2$\sqrt{6}$,$\overrightarrow{a}$∥$\overrightarrow{c}$.
(Ⅰ)求|$\overrightarrow{c}$-$\overrightarrow{a}$|;
(Ⅱ)若$\overrightarrow{a}$-$\overrightarrow{b}$与3$\overrightarrow{a}$+2$\overrightarrow{b}$垂直,求$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图1,ABCD为长方形,AB=3,AD=$\sqrt{2}$,E,F分别是边AB,CD上的点,且AE=CF=1,DE与AF相交于点G,将三角形ADF沿AF折起至ADF',使得D'E=1,如图2.
(1)求证:平面D'EG⊥ABCF平面;
(2)求三棱锥D'-BEG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.曲线y=2xtanx在点x=$\frac{π}{4}$处的切线方程是(2+π)x-y-$\frac{{π}^{2}}{4}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.为了得到函数y=1-2sin2(x-$\frac{π}{12}$)的图象,可以将函数y=sin2x的图象(  )
A.向左平移$\frac{π}{3}$个单位长度B.向右平移$\frac{π}{6}$个单位长度
C.向右平移$\frac{π}{3}$个单位长度D.向左平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知p:幂函数y=(m2-m-1)xm在(0,+∞)上单调递增;q:|m-2|<1,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E、F分别是棱PC和PD的中点.
(1)求证:EF∥平面PAB;
(2)若AP=AD,且平面PAD⊥平面ABCD,证明:AF⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则AD1与平面BB1D1所成角的正弦值为(  )
A.$\frac{\sqrt{10}}{10}$B.$\frac{3\sqrt{10}}{10}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.把89化成二进制数使(  )
A.100100B.10010C.10100D.1011001

查看答案和解析>>

同步练习册答案