精英家教网 > 高中数学 > 题目详情
2.i、j是两个不共线的向量,已知$\overrightarrow{AB}$=i+2j,$\overrightarrow{CB}$=i+λj,$\overrightarrow{CD}$=-2i+j,若A,B,D三点共线,则实数λ的值为7.

分析 求出$\overrightarrow{BD}$,利用A、B、D三点共线,列出方程组,求出实数λ的值即可.

解答 解:$\overrightarrow{BD}$=$\overrightarrow{CD}$-$\overrightarrow{CB}$=(-2i+j)-(i+λj)=-3i+(1-λ)j?
∵A、B、D三点共线,
∴向量与共线,因此存在实数μ,使得$\overrightarrow{AB}$=μ$\overrightarrow{BD}$,
即i+2j=μ[-3i+(1-λ)j]=-3μi+μ(1-λ)j
∵i与j是两不共线向量,由基本定理得:
$\left\{\begin{array}{l}{-3μ=1}\\{μ(1-λ)=2}\end{array}\right.$,
解得λ=7,
故答案为:7.

点评 本题重点考查了平面向量的共线条件的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设函数$f(x)=a-\sqrt{-{x^2}-4x}$和$g(x)=\frac{4}{3}x+1$,已知x∈[-4,0]时恒有f(x)≤g(x),则实数a的取值范围为(-∞,-$\frac{13}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ex+2x2-3x
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若存在x∈[1,3],使得关于x的不等式f(x)≥ax成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,3,4},则∁U(A∩B)为(  )
A.{1,2,4}B.{0,1,4}C.{0,2,4}D.{0,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=ax-x+2-2a(0<a<1)的零点x0∈(k-1,k)(k∈Z),则k=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ex(-x2+3)
(1)求函数f(x)的单调递减区间;
(2)当x∈(-1,+∞)时,f(x)+x2ex+2xex≥m(x+1)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若方程kx2+x-1=0只有一个实数根,求实数k的值0或-$\frac{1}{4}$,.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图是2015年某中学招聘新教师面试环节中,七位评委为某应聘者打出的分数的茎叶 统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和众数依次为(  )
A.85,、84B.84、85C.86、84D.84、86

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.关于函数y=x2-sinx的极值,下列说法正确的是(  )
A.有一个极大值和两个极小值B.有一个极大值和一个极小值
C.只有一个极小值D.只有一个极大值

查看答案和解析>>

同步练习册答案