精英家教网 > 高中数学 > 题目详情
1.如图,在复平面上,平行四边形OABC的3个顶点O,A,C对应的复数分别为0,4-3i,1+2i.求顶点B对应的复数.

分析 由复数的几何意义可得:$\overrightarrow{OA}$=(4,-3),$\overrightarrow{OC}$=(1,2),$\overrightarrow{OB}$=$\overrightarrow{OA}+\overrightarrow{OC}$,即可得出.

解答 解:由复数的几何意义可得:$\overrightarrow{OA}$=(4,-3),$\overrightarrow{OC}$=(1,2),$\overrightarrow{OB}$=$\overrightarrow{OA}+\overrightarrow{OC}$=(5,-1),
∴顶点B对应的复数为5-i.

点评 本题考查了复数的几何意义、向量的坐标运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知△ABC的内角A,B,C的对边分别为a,b,c,且有a2+b2-c2=4S△ABC
(1)求角C的大小;
(2)若c=$\sqrt{2}$,求a-$\frac{\sqrt{2}}{2}$b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax+$\frac{b}{x-1}$(a•b≠0).
(1)当b=a=1时,求函数f(x)的单调区间;
(2)若函数f(x)在点(2,f(2))处的切线方程是y=2x-3,证明:曲线y=f(x)上任一点处的切线与直线x=1和直线y=x所围成的三角形面积为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知xy>0,若x2+4y2>(m2+3m)xy恒成立,则实数m的取值范围是(  )
A.m≥-1或m≤-4B.m≥4或m≤-1C.-4<m<1D.-1<m<4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为了让学生了解更多“奥运会”知识,某中学举行了一次“奥运知识竞赛”,共有800名学生参加了这次竞赛,为了解本次竞赛成绩情况,从中抽取部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成的频率分布表,解答下列问题:
分组频数频率
60~70a0.16
70~8010
80~90180.36
90~100b
合计50
(1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…,799,试写出第二组第一位学生的编号;
(2)求频率分布表格中a,b的值,并估计800学生的平均成绩;
(3)若成绩在85~95分的学生为二等奖,问参赛学生中获得二等奖的学生约为多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知实数x,y满足2x+y=8,当2≤x≤3时,则$\frac{y}{x}$的最大值为2;最小值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知平面直角坐标系上一动点P(x,y)到点A(-2,0)的距离是点P到点B(1,0)的距离的2倍.
(1)求点P的轨迹方程;
(2)已知点Q(2,0),过点A的直线l与点P的轨迹C相交于E,F两点,当△QEF的面积最大时,求直线l的方程;
(3)过直线l′:3x+4y+14=0上一点R引点P的轨迹C的两条切线,切点分别为M,N,当线段MN的长度最小时,求MN所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知复数z=$\frac{{i+{i^2}+{i^3}+…+{i^{2017}}}}{1+i}$,则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图是某正方体被一平面截去一部分后剩下的几何体的三视图,则该几何体的体积为$\frac{20}{3}$.

查看答案和解析>>

同步练习册答案