精英家教网 > 高中数学 > 题目详情

已知函数.
(1)若函数为奇函数,求a的值;
(2)若,直线都不是曲线的切线,求k的取值范围;
(3)若,求在区间上的最大值.

(1);(2);(3) 当时,处取得最大值;当时,取得最大值;当时,取得最大值;当时,处都取得最大值0.

解析试题分析:(1)首先求出导数:
代入得:.
因为为奇函数,所以必为偶函数,即
所以.
(2)若,直线都不是曲线的切线,这说明k不在的导函数值域范围内. 所以求出的导函数,再求出它的值域,便可得k的范围.
(3).
得:.
注意它的两个零点的差恰好为1,且必有.
结合导函数的图象,可知导函数的符号,从而得到函数的单调区间和极值点.
试题解析:(1)因为
所以            2分
由二次函数奇偶性的定义,因为为奇函数,
所以为偶函数,即
所以                                4分
(2)若,直线都不是曲线的切线,即k不在导函数值域范围内.
因为
所以成立,
只要的最小值大于k即可,所以k的范围为.7分
(3).
因为,所以
时,成立,上单调递增,

所以当时,取得最大值;
时,在单调递增,在时,调递减,

所以当时,取得最大值;
时,在单调递减,

所以当时,取得最大值;.10分
时,在单调递减,在

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知f(x)=xlnx.
(I)求f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)证明:都有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)求的单调区间;
(Ⅲ)若在区间上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式其中为常数.己知销售价格为5元/千克时,每日可售出该商品11千克.
(1)求的值;
(2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为实数)有极值,且在处的切线与直线平行.
(Ⅰ)求实数a的取值范围;
(Ⅱ)是否存在实数a,使得函数的极小值为1,若存在,求出实数a的值;若不存在,请说明理由;
(Ⅲ)设函数试判断函数上的符号,并证明:
).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.
(Ⅰ)若,求的单调区间;
(Ⅱ) 若对一切恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)求f(x)的单调区间及极值;
(II)若关于x的不等式恒成立,求实数a的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调递增区间;
(2)若对任意,函数上都有三个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)判断函数的奇偶性;
(2)求函数的单调区间;
(3)若关于的方程有实数解,求实数的取值范围

查看答案和解析>>

同步练习册答案