精英家教网 > 高中数学 > 题目详情
6.下列命题正确的序号是①③
①命题“若a>b,则2a>2b”的否命题是真命题;
②若命题p:“$\frac{1}{x-1}$>0”,则;¬p:“$\frac{1}{x-1}$≤0”;
③若p是q的充分不必要条件,则¬p是¬q的必要不充分条件;
④方程ax2+x+a=0有唯一解的充要条件是a=±$\frac{1}{2}$.

分析 ①根据指数函数的性质判断即可;②写出p的否命题即可;③根据充分必要条件的定义判断即可;④通过讨论a=0,a≠0判断即可.

解答 解:①命题“若a>b,则2a>2b”的否命题是:“若a≤b,则2a≤2b”是真命题,故①正确;
②若命题p:“$\frac{1}{x-1}$>0”,则;¬p:“$\frac{1}{x-1}$<0”,故②错误;
③若p是q的充分不必要条件,则¬p是¬q的必要不充分条件,故③正确;
④方程ax2+x+a=0,当a=0时,方程也有唯一解,故④错误;
故答案为:①③.

点评 本题考查了充分必要条件,考查命题之间的关系,考查方程思想,本题综合性强,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.命题“所有实数的平方根都是正数”的否定为(  )
A.所有实数的平方都不是正数B.有的实数的平方是正数
C.至少有一个实数的平方不是正数D.至少有一个实数的平方是正数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)是定义在(-∞,+∞)上的增函数,实数a使得f(1-ax-x2)<f(2-a)对于任意x∈[0,1]都成立,则实数a的取值范围是(  )
A.(-∞,1)B.[-2,0]C.(-2-2$\sqrt{2}$,-2+2$\sqrt{2}})$)D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0),最大值为2,函数与直线y=1的交点中,距离最近两点间的距离为$\frac{π}{3}$,若f(x)≤|f($\frac{π}{6}$)|对x∈R恒成立,且$f(\frac{π}{2})>f(π)$,求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆C的方程为x2+(y-4)2=4,点O是坐标原点.直线l:y=$\sqrt{k}$•x与圆C交于M.N不同的两点.
(Ⅰ)求k的取值范围;
(Ⅱ)设点M、N的横坐标分别是x1、x2
①试用x1、x2、k来表示|OM|、|ON|;
②设Q(m,n)是线段MN上的点,且$\frac{2}{|OQ{|}^{2}}$=$\frac{1}{|OM{|}^{2}}$+$\frac{1}{|ON{|}^{2}}$.请用m表示n,并求n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.1,3,6,11,18,29,…按照规律,第7个数应为(  )
A.42B.40C.36D.53

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知正方体的棱长为2$\sqrt{3}$,则外接球的体积为(  )
A.36πB.288πC.12πD.18π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=$\frac{sinx+sinx•cosx}{sinx+cosx}$是非奇非偶函数(填“奇函数”、“偶函数”、“非奇非偶函数”、“是奇函数又是偶函数”).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是(  )
A.若m,n平行于同一平面,则m与n平行
B.若α,β垂直于同一平面,则α与β平行
C.若m,n是异面直线,过空间中任意一点一定存在平面与m,n都平行
D.若m,n不平行,则m与n一定不可能垂直于同一平面

查看答案和解析>>

同步练习册答案