精英家教网 > 高中数学 > 题目详情
6.已知y=f(x)是定义在R上的单调函数,任意实数x1,x2满足x1<x2,λ≠-1,α=$\frac{{x}_{1}+λ{x}_{2}}{1+λ}$,β=$\frac{λ{x}_{1}+{x}_{2}}{1+λ}$,若|f(x1)-f(x2)|<|f(α)-f(β)|恒成立,则有(  )
A.0<λ<1B.λ=0C.λ<0且λ≠-1D.λ≥1

分析 对抽象函数的理解,可以用简单的一次函数模拟,帮助分析,由单调函数可得|α-β|>|x1-x2|,代入可得|1-λ|>|1+λ|,两边平方,解出即可.

解答 解:∵y=f(x)是定义在R上的单调函数而|f(x1)-f(x2)|<|f(α)-f(β)|,
易得:α+β=x1+x2
若为递减函数如图:

递增函数同理可得,
∴|α-β|>|x1-x2|
将α=$\frac{{x}_{1}+λ{x}_{2}}{1+λ}$,β=$\frac{λ{x}_{1}+{x}_{2}}{1+λ}$,代入得
|1-λ||x1-x2|>|x1-x2|而x1≠x2
∴|1-λ|>|1+λ|,
∴4λ<0,解得λ<0,又λ≠-1,
故选:C.

点评 考查了抽象函数的理解,难点是如何得出|α-β|>|x1-x2|.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知△ABC的两边长分别为2,3,这两边的夹角的余弦值为$\frac{1}{3}$,则△ABC的外接圆的直径为(  )
A.$\frac{9\sqrt{2}}{2}$B.$\frac{9\sqrt{2}}{4}$C.$\frac{9\sqrt{2}}{6}$D.8$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)若函数y=f(x)的图象与直线y=$\frac{1}{2}$x+a没有交点,求a的取值范围;
(3)若函数h(x)=4f(x)+${\;}^{\frac{1}{2}}$x+m•2x-1,x∈[0,log23],是否存在实数m使得h(x)最小值为0,若存在,求出m的值; 若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.用数学归纳法证明2+3+4+…+n=$\frac{(n-1)(n+2)}{2}$时,第一步取n=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.用数学归纳法证明:f(n)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{n}}$(n∈N*)的过程中,从n=k到n=k+1时,f(k+1)比f(k)共增加了2k项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若f(cosx)=coskx(k∈Z),则f(sinx)=sinkx,则整数k应满足的条件为k=4n+1,n∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知x>0,y>0,且x+y=1.
(1)证明:$\frac{1}{x}$+$\frac{4}{y}$≥9;
(2)求$\sqrt{2x+1}$+$\sqrt{2y+1}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设a1,a2,…a2014都是正数且a1+a2+…+a2014=1.则$\frac{{{a}_{1}}^{2}}{2+{a}_{1}}$+$\frac{{{a}_{2}}^{2}}{2+{a}_{2}}$+…$\frac{{{a}_{2013}}^{2}}{2+{a}_{2013}}$+$\frac{{{a}_{2014}}^{2}}{2+{a}_{2014}}$的最小值为$\frac{1}{4029}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,正方形ABCD中,点E是DC的中点,CF:FB=2:1,那么$\overrightarrow{EF}$=(  )
A.$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AD}$B.$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AD}$C.$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AD}$D.$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AD}$

查看答案和解析>>

同步练习册答案