精英家教网 > 高中数学 > 题目详情

【题目】从高三年级随机抽取100名学生,将他们的某次考试数学成绩绘制成频率分布直方图.由图中数据可知成绩在[130,140)内的学生人数为

【答案】30
【解析】解:由频率分布直方图得:数据不在[130,140]之间的学生频率为

(0.005+0.035+0.020+0.010)×10=0.7,

∴数据在[130,140]之间的学生的频率为:

1﹣0.7=0.3,

∴成绩在[130,140)内的学生人数为0.3×100=30.

所以答案是:30

【考点精析】通过灵活运用频率分布直方图,掌握频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3﹣bx+2(a>0)
(1)在x=1时有极值0,试求函数f(x)的解析式;
(2)求f(x)在x=2处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前项和为Sn , 且 ,用[x]表示不超过x的最大整数,如[﹣0.1]=﹣1,[1.6]=1,设bn=[an],则数列{bn}的前2n项和b1+b2+b3+b4++b2n1+b2n=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图,则输出x的值是(
A.2016
B.1024
C.
D.﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司针对企业职工推出一款意外险产品,每年每人只要交少量保费,发生意外后可一次性获赔50万元.保险公司把职工从事的所有岗位共分为A、B、C三类工种,根据历史数据统计出三类工种的每赔付频率如下表(并以此估计赔付概率).

工种类别

A

B

C

赔付频率

(Ⅰ)根据规定,该产品各工种保单的期望利润都不得超过保费的20%,试分别确定各类工种每张保单保费的上限;
(Ⅱ)某企业共有职工20000人,从事三类工种的人数分布比例如图,老板准备为全体职工每人购买一份此种保险,并以(Ⅰ)中计算的各类保险上限购买,试估计保险公司在这宗交易中的期望利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ax,g(x)= +a.
(1)当a=2 时,求F(x)=f(x)﹣g(x)在(0,2]的最大值;
(2)讨论函数F(x)=f(x)﹣g(x) 的单调性;
(3)若f(x)g(x)≤0 在定义域内恒成立,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,3,则输出v的值为(
A.16
B.18
C.48
D.143

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A是双曲线 =1(a>0,b>0)的左顶点,F1 , F2分别为左、右焦点,P为双曲线上一点,G是△F1PF2的重心,若 ,| |= ,| |+| |=8,则双曲线的标准方程为(
A.x2 =1
B. ﹣y2=1
C. =1
D.x2 =1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四面体A﹣BCD中,AB=CD=10,AC=BD=2 ,AD=BC=2 ,则四面体A﹣BCD外接球的表面积为(
A.50π
B.100π
C.200π
D.300π

查看答案和解析>>

同步练习册答案