精英家教网 > 高中数学 > 题目详情

【题目】三棱柱中,平面平面,点为棱的中点,点为线段上的动点.

1)求证:

2)若直线与平面所成角为,求二面角的正切值.

【答案】1)见解析;(2

【解析】

1)可证,从而可得.

2)可证点为线段的三等分点,再过,过,垂足为,则为二面角的平面角,利用解直角三角形的方法可求.也可以建立如图所示的空间直角坐标系,利用两个平面的法向量来计算二面角的平面角的余弦值,最后利用同角三角函数的基本关系式可求.

证明:(1)因为中点,所以.

因为平面平面,平面平面平面

所以平面,而平面,故

又因为,所以,则

,故,又,所以.

2)由(1)可得:在面内的射影为

为直线与平面所成的角,即.

因为,所以,所以,所以

即点为线段的三等分点.

解法一:过,则平面

所以,过,垂足为

为二面角的平面角,

因为

则在中,有

所以二面角的平面角的正切值为.

解法二:以点为原点,建立如图所示的空间直角坐标系,

设点,由得:

,点

平面的一个法向量

设平面的一个法向量为

,令,则平面的一个法向量为.

设二面角的平面角为,则

,所以二面角的正切值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .若gx)存在2个零点,则a的取值范围是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体的棱长为,点分别棱楼的中点,下列结论中正确的是(

A.四面体的体积等于B.平面

C.平面D.异面直线所成角的正切值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,抛物线上的点到准线的最小距离为2.

1)求抛物线的方程;

2)若过点作互相垂直的两条直线与抛物线交于两点,与抛物线交于两点,分别为弦的中点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】唐诗是中国文学的瑰宝.为了研究计算机上唐诗分类工作中检索关键字的选取,某研究人员将唐诗分成7大类别,并从《全唐诗》48900多篇唐诗中随机抽取了500篇,统计了每个类别及各类别包含“花”、“山”、“帘”字的篇数,得到下表:

爱情婚姻

咏史怀古

边塞战争

山水田园

交游送别

羁旅思乡

其他

总计

篇数

100

64

55

99

91

73

18

500

含“山”字的篇数

51

48

21

69

48

30

4

271

含“帘”字的篇数

21

2

0

0

7

3

5

38

含“花”字的篇数

60

6

14

17

32

28

3

160

1)根据上表判断,若从《全唐诗》含“山”字的唐诗中随机抽取一篇,则它属于哪个类别的可能性最大,属于哪个类别的可能性最小,并分别估计该唐诗属于这两个类别的概率;

2)已知检索关键字的选取规则为:

①若有超过95%的把握判断“某字”与“某类别”有关系,则“某字”为“某类别”的关键字;

②若“某字”被选为“某类别”关键字,则由其对应列联表得到的的观测值越大,排名就越靠前;

设“山”“帘”“花”和“爱情婚姻”对应的观测值分别为.已知,请完成下面列联表,并从上述三个字中选出“爱情婚姻”类别的关键字并排名.

属于“爱情婚姻”类

不属于“爱情婚姻”类

总计

含“花”字的篇数

不含“花”的篇数

总计

附:,其中.

0.05

0.025

0.010

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若方程有两个不同的实数解,则b的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人进行围棋比赛,记事件A为“甲获得比赛胜利或者平局”,事件B为“乙获得比赛的胜利或者平局”,已知.

(1)求甲获得比赛胜利的概率;

(2)求甲、乙两人获得平局的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体中,,过三点的平面截去长方体的一个角后,得到如图所示的几何体,这个几何体的体积为

(1)求棱的长;

(2)求经过四点的球的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北京、张家口2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估,该商品原来每件售价为25元,年销售8万件.

(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?

(2)为了抓住申奥契机,扩大该商品的影响力,提高年销售量.公司决定立即对该商品进行全面技术革新和营销策略改革,并提高定价到元.公司拟投入万作为技改费用,投入50万元作为固定宣传费用,投入万元作为浮动宣传费用.试问:当该商品改革后的销售量至少应达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.

查看答案和解析>>

同步练习册答案