精英家教网 > 高中数学 > 题目详情

【题目】亳州某商场举行购物抽奖活动,规定每位顾客从装有编号为0,1,2,3四个相同小求的抽奖箱中,每次取出一球,记下编号后放回,连续取两次,若取出的两个小球号码相加之和等于6,则中一等奖;等于5中二等奖;等于4或3中三等奖.

(1)求中三等奖的概率;

(2)求不中奖的概率.

【答案】(1) ;(2) .

【解析】试题分析:1)设“中三等奖”为事件A,“中奖”为事件B,利用列举法能求出中三等奖的概率.(2)利用列举法求出中奖的概率,由此能求出不中奖的概率.

试题解析:

设“中三等奖”为事件A,“中奖”为事件B

从四个小球中有放回地取两个有(0,0),(0,1),(0,2),(0,3), (1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3),共16种不同的结果.

(1)取出的两个小球号码相加之和等于4或3的取法有:(1,3),(2,2),(3,1),(0,3),(1,2),(2,1),(3,0),共7种结果,

则中三等奖的概率为P(A)=

(2)由(1)知两个小球号码相加之和等于3或4的取法有7种;

两个小球号码相加之和等于5的取法有2种:(2,3),(3,2).

两个小球号码相加之和等于6的取法有1种:(3,3).

则中奖概率为P(B)=

所以不中奖的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设关于x的一元二次方程x2+2ax+b2=0.

(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.

(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实数,函数.

(1)求证: 不是上的奇函数;

(2)若上的单调函数,求实数的值;

(3)若函数在区间上恰有3个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某市园林局准备绿化一块直径为的半圆空地,以外的地方种草,的内接正方形为一水池,其余的地方种花,若为定值),,设的面积为,正方形的面积为

(1)用表示

(2)当为何值时,取得最大值,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量函数

(1)求函数的值域;

(2)求方程,在内的所有实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为常数). 

(Ⅰ)求函数在点处的切线方程;

(Ⅱ)当函数处取得极值,求函数的解析式;

(Ⅲ)当时,设,若函数在定义域上存在单调减区间,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为的导函数.

(1)求方程的解集;

(2)求函数的最大值与最小值;

(3)若函数在定义域上恰有2个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设

)求的单调区间和最小值;

)讨论的大小关系;

)求的取值范围,使得对任意成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的短轴长为2,且函数的图象与椭圆仅有两个公共点,过原点的直线与椭圆交于两点.

(1)求椭圆的标准方程;

(2)点为线段的中垂线与椭圆的一个公共点,求面积的最小值,并求此时直线的方程.

查看答案和解析>>

同步练习册答案