精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=sin2x+2cos2x-1.
(Ⅰ)求f(x)最小正周期;
(Ⅱ)求f(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

分析 利用三角恒等变换化简函数f(x),
即可求出(Ⅰ)函数f(x)的最小正周期,
(Ⅱ)根据x的取值范围,计算f(x)的最值.

解答 解:函数f(x)=sin2x+2cos2x-1
=sin2x+cos2x
=$\sqrt{2}sin(2x+\frac{π}{4})$;…(4分)
(Ⅰ)函数f(x)的最小正周期为:
$T=\frac{2π}{2}=π$;…(6分)
(Ⅱ)∵$x∈[0,\frac{π}{2}]$,
∴$2x+\frac{π}{4}∈[\frac{π}{4},\frac{5π}{4}]$;…(7分)
∴$sin(2x+\frac{π}{4})∈[-\frac{{\sqrt{2}}}{2},1]$;…(9分)
∴当$2x+\frac{π}{4}=\frac{5π}{4}$,即$x=\frac{π}{2}$时,f(x)取得最小值-1;…(11分)
∴当$2x+\frac{π}{4}=\frac{π}{2}$,即$x=\frac{π}{8}$时,f(x)取得最大值$\sqrt{2}$.…(13分)

点评 本题考查了三角函数的化简以及三角函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.直三棱柱A1B1C1-ABC,∠BCA=90°,点D1,F1分别是A1B1,A1C1的中点,BC=CA=CC1,则BD1与AF1所成角的余弦值是(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{30}}}{10}$C.$\frac{{\sqrt{30}}}{15}$D.$\frac{{\sqrt{15}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点A的坐标为(4,1),点B(-7,-2)关于直线y=x的对称点为C.
(Ⅰ)求以A、C为直径的圆E的方程;
(Ⅱ)设经过点A的直线l与圆E的另一个交点为D,|AD|=8,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设m,n(3≤m≤n)是正整数,数列Am:a1,a2,…,am,其中ai(1≤i≤m)是集合{1,2,3,…,n}中互不相同的元素.若数列Am满足:只要存在i,j(1≤i<j≤m)使ai+aj≤n,总存在k(1≤k≤m)有ai+aj=ak,则称数列Am是“好数列”.
(Ⅰ)当m=6,n=100时,
(ⅰ)若数列A6:11,78,x,y,97,90是一个“好数列”,试写出x,y的值,并判断数列:11,78,90,x,97,y是否是一个“好数列”?
(ⅱ)若数列A6:11,78,a,b,c,d是“好数列”,且a<b<c<d,求a,b,c,d共有多少种不同的取值?
(Ⅱ)若数列Am是“好数列”,且m是偶数,证明:$\frac{{{a_1}+{a_2}+…+{a_m}}}{m}≥\frac{n+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,四边形ABCD是边长为2的正方形,平面ABCD⊥平面ABEF,AF∥BE,AB⊥BE,AB=BE=2,AF=1.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求证:AC∥平面DEF;
(Ⅲ)求三棱锥C-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a>0且a≠1,函数$f(x)=\left\{{\begin{array}{l}{{{log}_{\frac{1}{3}}}x,}&{x>0}\\{{a^x}+b,}&{x≤0}\end{array}}\right.$满足f(0)=2,f(-1)=3,则f(f(-3))=(  )
A.-3B.-2C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,O∈AD,AD∥BC,AB⊥AD,AO=AB=BC=1,PO=$\sqrt{2}$,$PC=\sqrt{3}$.
(Ⅰ)证明:平面POC⊥平面PAD;
(Ⅱ)若AD=2,PA=PD,求CD与平面PAB所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥V-ABCD的底面是直角梯形,VA⊥面ABCD,AD∥BC,AD⊥CD,VA=AD=CD=$\frac{1}{2}$BC=a,点E是棱VA上不同于A,V的点.
(1)求证:无论点E在VA如何移动都有AB⊥CE;
(2)设二面角A-BE-D的大小为α,直线VC与平面ABCD所成的角为β,试确定点E的位置使$tanαtanβ=\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.复数i(2-i)在复平面内对应的点的坐标为(  )
A.(-2,1)B.(2,-1)C.(1,2)D.(-1,2)

查看答案和解析>>

同步练习册答案