精英家教网 > 高中数学 > 题目详情

【题目】已知△ABC的两个顶点A,B的坐标分别为(﹣2,0),(2,0),且AC,BC所在直线的斜率之积等于

(1)求顶点C的轨迹方程;

(2)若斜率为1的直线与顶点C的轨迹交于M,N两点,且|MN|=,求直线的方程.

【答案】y=x±1

【解析】

试题()设出C的坐标,利用ACBC所在直线的斜率之积等于,列出方程,求出点C的轨迹方程;

)设直线l的方程为y=x+m,与椭圆方程联立,利用韦达定理,结合|MN|=,即可求直线l的方程.

解:()设C的坐标为(xy),则

直线AC的斜率

直线BC的斜率

由已知有,化简得顶点C的轨迹方程,

)设直线l的方程为y=x+mMx1y1),Nx2y2),

由题意,解得5x2+8mx+4m2﹣4=0

△=64m2﹣204m2﹣4)>0,解得

代入解得m2=1m=±1

直线l的方程为y=x±1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国古代著名的周髀算经中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷长一丈三尺五寸,夏至晷长一尺六寸意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分则“立春”时日影长度为  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高级中学今年高一年级招收“国际班”学生人,学校为这些学生开辟了直升海外一流大学的绿色通道,为了逐步提高这些学生与国际教育接轨的能力,将这人分为三个批次参加国际教育研修培训,在这三个批次的学生中男、女学生人数如下表:

第一批次

第二批次

第三批次

已知在这名学生中随机抽取名,抽到第一批次、第二批次中女学生的概率分别是.

(1)求的值;

(2)为了检验研修的效果,现从三个批次中按分层抽样的方法抽取名同学问卷调查,则三个批次被选取的人数分别是多少?

(3)若从第(2)小问选取的学生中随机选出两名学生进行访谈,求“参加访谈的两名同学至少有一个人来自第一批次”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点和动点,以线段为直径的圆内切于圆.

(1)求动点的轨迹方程;

(2)已知点 ,经过点的直线与动点的轨迹交于 两点,求证:直线与直线的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是等腰梯形,平面.

)求证:平面

)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据说伟大的阿基米德逝世后,敌军将领马塞拉斯给他建了一块墓碑,在墓碑上刻了一个如图所示的图案,图案中球的直径、圆柱底面的直径和圆柱的高相等,圆锥的顶点为圆柱上底面的圆心,圆锥的底面是圆柱的下底面.

1)试计算出图案中圆柱与球的体积比;

2)假设球半径.试计算出图案中圆锥的体积和表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:极坐标与参数方程

在平面直角坐标系中,将曲线 (为参数) 上任意一点经过伸缩变换后得到曲线的图形.以坐标原点为极点,x轴的非负半轴为极轴,取相同的单位长度建立极坐标系,已知直线

Ⅰ)求曲线和直线的普通方程;

Ⅱ)点P为曲线上的任意一点,求点P到直线的距离的最大值及取得最大值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 (m常数)

1求函数的单调区间;

2,函数有零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量函数,其图象的两条相邻对称轴间的距离为.

1)求函数的解析式;

2)将函数的图象上各点的横坐标缩短为原来的,纵坐标不变,再将图象向右平移个单位,得到的图象,求的单调递增区间.

查看答案和解析>>

同步练习册答案