精英家教网 > 高中数学 > 题目详情

【题目】已知函数,命题;命题.

(1)为真命题,求的取值范围;

(2)为真命题,求的取值范围;

(3)为假命题,为假命题,求的取值范围.

【答案】(1)(2)(3)

【解析】分析:(1)当为真命题,即使得成立,故只需即可.(2)为真命题,即成立,故.(3)分析题意得到为真命题,为假命题由此可得关于的不等式组,解不等式组可得所求

详解的图象为开口向上,对称轴为的抛物线,

上单调递减,在上单调递增,

,

(1)若为真命题,即使得成立,

∴实数的取值范围为

(2)若为真命题,即恒成立,

.

解得

∴实数的取值范围为

(3)为假命题,为假命题

为真命题,为假命题.

解得

∴实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知k∈R,直线l1:x+ky=0过定点P,直线l2:kx﹣y﹣2k+2=0过定点Q,两直线交于点M,则|MP|+|MQ|的最大值是(
A.2
B.4
C.4
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列{an}的前n项和为Sn , 且S2=6,S4=30,n∈N* , 数列{bn}满足bnbn+1=an , b1=1
(1)求an , bn
(2)求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中, 平面BC的中点.

求证:

求异面直线AE所成的角的大小;

G中点,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数),且曲线在点处的切线平行于轴.

(1)求的值;

(2)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,C是以AB为直径的圆O上异于A,B的点,平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F 分别是PC,PB的中点,记平面AEF与平面ABC的交线为直线l.
(Ⅰ)求证:直线l⊥平面PAC;
(Ⅱ)直线l上是否存在点Q,使直线PQ分别与平面AEF、直线EF所成的角互余?若存在,求出|AQ|的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣2x﹣3≤0,x∈R},B={x|m﹣1≤x≤m+1,x∈R,m∈R}

(1)若A∩B=[1,3],求实数m的值;

(2)若ARB,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左右焦点分别为 ,左顶点为,上顶点为 的面积为.

(1)求椭圆的方程;

(2)设直线 与椭圆相交于不同的两点 是线段的中点.若经过点的直线与直线垂直于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆以原点为圆心,且圆与直线相切.

(Ⅰ)求圆的方程;

(Ⅱ)若直线与圆交于两点,分别过两点作直线的垂线,交轴于两点,求线段的长.

查看答案和解析>>

同步练习册答案